Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1418-1424.doi: 10.3864/j.issn.0578-1752.2012.07.021

• RESEARCH NOTES • Previous Articles     Next Articles

Osmoregulation of MPK3, MPK4 and MPK6 from Arabidopsis thaliana in Yeast hog1? Mutant

 LI  Po, GU  Shou-Qin, YANG  Yang, WU  Min, WANG  Mei-Juan, ZHANG  Chang-Zhi, DONG  Jin-Gao   

  1. 河北农业大学生命科学学院真菌毒素与植物分子病理学实验室,河北保定 071000
  • Received:2011-11-15 Online:2012-04-01 Published:2011-12-26

Abstract: 【Objective】The objective of this research is to study MPK3, MPK4 and MPK6 which are the key genes of MAPK signal transduction pathway, and to identify these MAPKs in osmoregulation of Arabidopsis thaliana. 【Method】The yeast expression vectors pVT102U-MPK3/MPK4/MPK6 were constructed, and were transformed into the yeast HOG1 null mutant (hog1?), and the positive transformants were characterized by complementation. 【Result】 The full length cDNA of MPK3, MPK4 and MPK6 gene was amplified, and then transformed into hog1? of Sacharomyces cerevisiae through yeast expression vector. Under salt stress with 1 mol•L-1 KCl, 0.3 mol•L-1 LiCl, 1 mol•L-1 NaCl and 1 mol•L-1 sorbitol, the growth of transformants was very well which was almost in accordance with wild type strains, and these genes rescued hog1? to phenotype of wild type which is insensitive to salt stress. Under salt stress, the cell morphology of hog1? was aberrant and its intracellular glycerol concentration was lower than WT, but the morphology and glycerol content of transformants was a normal phenotype.【Conclusion】With function of osmoregulation, MPK3, MPK4 and MPK6 could rescue hog1? from loss of resistance to salt.

Key words: Arabidopsis thaliana, MAPK, complementation, osmoregulation

[1]Chen Z, Gibson T B, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb M H. MAP kinases. Chemical Reviews, 2001, 101: 2449-2476.

[2]Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 2005, 10: 339-346.

[3]Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: The role of mitogen-activated protein kinases. Trends in Biotechnology, 1997, 15: 15-19.

[4]Asai T, Tena G, Plotnikova J, Willmann1 M R, Chiu1 W L, Gomez-Gomez L, Boller T, Ausubel1 F M, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983.

[5]Colcombet J, Hirt H. Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. The Biochemical Journal, 2008, 413: 217-226.

[6]Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 2009, 12(4): 421-426.

[7]MAPK groups. Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends in Plant Science, 2002, 7: 301-308.

[8]Rodriguez M C S, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology, 2010, 61: 621-649.

[9]Droillard M J, Boudsocq M, Barbier-Brygoo H, Lauriere C. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: Activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Letters, 2004, 574: 42-48.

[10]Desikan R, Hancock J T, Ichimura K, Shinozaki K, Neill S J. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiology, 2001, 126: 1579-1587.

[11]Ren D, Liu Y, Yang K Y, Han L, Mao G, Glazebrook J, Zhang S. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 5638-5643.

[12]Gudesblat G E, Iusem N D, Morris P C. Guard cell-speci?c inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytologist, 2007, 173: 713-721.

[13]Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi- Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 765-769.

[14]Teige M, Scheikl E, Eulgem T, Doczi, R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 2004, 15: 141-152.

[15]Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual: Third Edition. New York: Cold Spring Harbor Laboratory Press, 2001: 28-30.

[16]Gietz R D, Woods R A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in Enzymology, 2002, 350: 87-96.

[17]Navarro-Garcia F, Sanchez M, Pla J, Nombela C. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Molecular and Cellular Biology, 1995, 15(4): 2197-2206.

[18]Fujioka T, Mizutani O, Furukawa K, Sato N, Yoshimi A, Yamagata Y, Nakajima T, Abe K. MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryotic Cell, 2007, 6(8): 1497-1510.

[19]Galcheva-Gargova Z, Derijard B, Wu I H, Davis R J. An osmosensing signal transduction pathway in mammalian cells. Science, 1994, 265: 806-808.

[20]Han J, Lee J D, Bibbs L, Ulevitch R J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994, 265: 808-811.

[21]Atienza J M, Suh M, Xenarios I, Landgraf R, Colicelli J. Human ERK1 induces ?lamentous growth and cell wall remodeling pathways in Saccharomyces cerevisiae. Journal of Biology Chemistry, 2000, 275: 20638-20646.

[22]Andrew W T, Stefan H M, James M N, King V, Mollapour M, Prodromou C, Pearl L H, Piper P W. Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase. Eukaryotic Cell, 2006, 5(11): 1914-1924.

[23]Dixon K P, Xu J R, Smirnoff N, Talbot N J. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. The Plant Cell, 1999, 11: 2045-2058.

[24]Yan J, Song W, Nevo E. A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: Prospects for saline agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 18992-18997.

[25]Masuda C A, Xavier M A, Mattos K A, Galina A, Montero-Lomel M. Phosphoglucomutase is an in vivo lithium target in yeast. The Journal of Biology and Chemistry, 2001, 276: 37794-37801.
[1] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[2] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[3] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
[4] ZHANG Cheng,HE MingLiang,WANG Wei,XU FangSen. Development of an Efficient Editing System in Arabidopsis by CRISPR-Cas9 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2340-2348.
[5] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[6] BI ChongLiang,LIU JunJun,WANG Heng,WANG Juan,HAN ZhaoQing,GUAN LiZeng. Effects of Selenium on the Key Factors in Nod2/MAPK/mTORs Signaling Pathways in the bMECs Infected S. aureus [J]. Scientia Agricultura Sinica, 2019, 52(16): 2891-2898.
[7] WANG YiCheng, WANG Nan, XU HaiFeng, ZHANG ZongYing, JIANG ShengHui, ZHANG Jing, QU ChangZhi, CHEN XueSen. Molecular Cloning and Expression Analysis of Cytokinins Responsive Gene MdMYB308 in Red Flesh Apple [J]. Scientia Agricultura Sinica, 2017, 50(21): 4178-4185.
[8] JIANG YaMing, DONG ZhanQi, CHEN TingTing, HU Nan, DONG FeiFan, HUANG Liang, TANG LiangTong, PAN MinHui. Identification the key areas of Bombyx mori Nucleopolyhedrovirus LEF-11 self-interaction [J]. Scientia Agricultura Sinica, 2017, 50(20): 4028-4035.
[9] DU Huan, MA TongTong, GUO Shuai, ZHANG Ying, BAI ZhiYing, LI CunDong. Response of Root Morphology and Leaf Osmoregulation Substances of Seedling in Barley Genotypes with Different Heights to PEG Stress [J]. Scientia Agricultura Sinica, 2017, 50(13): 2423-2432.
[10] YUAN Min, XING JiHong, WANG Li, GE WeiNa, GUO Di, ZHANG Lan. Interaction Between TFL1 and GRFs in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2017, 50(10): 1772-1780.
[11] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[12] SUN Yu-jing, MA Wen-xiu, CAI Lu-lu, LIU Liang, ZOU Li-fang, CHEN Gong-you. Identification of a Protein both in Tobacco and Rice that Interacts with an HR-elicitor SsbX of Xanthomonas oryzae pv. oryzicola [J]. Scientia Agricultura Sinica, 2015, 48(4): 683-694.
[13] SUN Guang-hua, YUAN Huan-huan, FAN Xiao-cong, GU Hai-ke, SONG Mei-fang, XIAO Yang, MENG Fan-hua, GUO Lin, YANG Qing-hua, ZHAN Ke-hui, YANGJian-ping. Molecular Cloning and Arabidopsis Ectopic Expression of a Phytochrome B gene from Brassica oleracea [J]. Scientia Agricultura Sinica, 2015, 48(22): 4417-4427.
[14] HUANG Xin, GAO Meng-zhu, ZHANG Hao, GAO Jing, WANG Feng-ru, DONG Jin-gao. Effect of Brassinolide on Calcium Ion Distribution of Plant Cell [J]. Scientia Agricultura Sinica, 2015, 48(10): 2067-2075.
[15] GONG Xiao-Dong-1, ZHANG Xiao-Yu-1, TIAN Lan-1, WANG Xing-Yi-1, LI Po-2, ZHANG Pan-1, WANG Yue-1, FAN Yong-Shan-3, HAN Jian-Min-1, GU Shou-Qin-1, DONG Jin-Gao-1. Genome-Wide Identification MAPK Superfamily and Establishment of the Model of MAPK Cascade Pathway in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!