Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (15): 3078-3085.doi: 10.3864/j.issn.0578-1752.2011.15.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Dynamic QTL Mapping of Wheat Protein Content in Developing Grains

ZHU  Zhan-Ling, LIU  Bin, TIAN  Bin, XIE  Quan-Gang, LI  Wen-Fu, TIAN  Ji-Chun   

  1. 1.山东农业大学农学院/作物生物学国家重点实验室小麦品质育种研究室
  • Received:2010-12-07 Revised:2011-01-06 Online:2011-08-01 Published:2011-01-30

Abstract: 【Objective】Grain protein content (GPC) is an important quality factor in bread wheat, which is determined by quantitative trait loci (QTLs). In this study, to attain more genetic information of GPC accumulation,the number and genetic effects of QTLs/genes related to GPC were detected at different seed filling stages. 【Method】 QTLs/genes related to GPC were studied at five seed filling stages in six different environments, using a doubled haploid (DH) population derived from a cross between two elite Chinese wheat cultivars Huapei 3×Yumai 57. QTL mapping for developmental behavior of GPC was studied by unconditional and conditional quantitative trait locus (QTL) analyses in a mixed linear model.【Result】A total of nine unconditional QTLs and ten conditional QTLs were detected at five seed filling periods. The unconditional QTL named QGpc3A persistently expressed at all seed filling stages may play a most important role for the accumulation of GPC, the rest unconditional QTLs and conditional QTLs were only detected at a few or a special periods. At the period of 12 days after anthesis the gene expression was active, and the QTLs detected could account for 42.62% of phenotypic variation totally. However, the QTLs detected could totally account for only 17.43% of phenotypic variation at 22 d after anthesis with lowest phenotypic value. 【Conclusion】The dynamic change of GPC show a high - low - high trend and QTLs controlling GPC were developmental stage speci?c.

Key words: common wheat, DH population, grain protein content (GPC), unconditional QTL, conditional QTL

[1]Blanco A, De Giovanni C, Laddomada B, Sciancalepore A, Simeone R, Devos K M, Gale M D. Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breeding, 1996, 115: 310-316.

[2]Mesfin A, Frohberg R C, Anderson J A. RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Science, 1999, 39: 508-513.

[3]Harjit S, Prasad M, Varshney R K, Roy J K. Balyan H S, Gupta P K. STMS markers for grain protein content and their validation using near-isogentic lines in bread wheat. Plant Breeding, 2001, 120(4): 273-278.

[4]Prasad M, Kumar N, Kulwal P L, Röder M S, Balyan H S, Dhaliwal H S, Gupt. P K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theoretical and Applied Genetics, 2003, 106: 659-667.

[5]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113: 753-766.

[6]石培春, 曹连莆, 王光利, 张  薇. 小麦籽粒蛋白质组分含量的QTL定位. 麦类作物学报, 2008, 28(4): 550-554.

Shi P C, Cao L P, Wang G L, Zhang W. Mapping QTLs related to prptein components of grain of common wheat. Journal of Triticeae Crops, 2008, 28(4): 550-554. (in Chinese)

[7]Zhao L, Zhang K P, Liu B, Deng Z Y, Qu H L, Tian J C. A comparison of grain protein content QTLs and ?our protein content QTLs across environments in cultivated wheat. Euphytica, 2010, 174: 325-335.

[8]Yan J Q, Zhu J, He C X, Benmoussa1 M, Wu P. Moleculai dissection of developmental behavior of plant height in rice (Oryza sativa L. ). Genetics, 1998, 150: 1257-1265.

[9]吴为人, 李维明, 卢浩然. 数量性状基因座的动态定位策略. 生物数学学报, 1997, 12(5): 490-498.

Wu W R, Li W M, Lu H R. Strategy of dynamic mapping of quantitative trait loci. Journal of Biomathematics, 1997, 12(5): 490-498. (in Chinese)

[10]Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639.

[11]何慈信, 朱  军, 严菊强, Mebrouk B, 吴  平. 水稻穗干物质重发育动态的QTL定位. 中国农业科学, 2000, 33(1): 24-32.

He C X, Zhu J, Yan J Q, Benmoussa M, Wu P. QTL mapping for developmental behavior of panicle dry weight in rice. Scientia Agricultura Sinica, 2000, 33(1): 24-32. (in Chinese)

[12]何慈信, 朱  军, 严菊强, Mebrouk Benmoussa, 吴  平. 水稻叶挺长发育动态的QTL 分析. 中国水稻科学, 2000, 14(4): 193-198.

He C X, Zhu J, Yan J Q, Benmoussa M, Wu P. QTL mapping for development al behaviour of leaf sheat h height in rice. Chinese Journal Rice Science, 2000, 14(4): 193-198. (in Chinese)

[13]Liu G F, Zhu H T, Liu S W, Zeng R Z, Zhang Z M, Li W T, Ding X H, Zhao F M, Zhang G Q. Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.). Genetica, 2010, 138: 885-893.

[14]Qu Y Y, Mu P, Zhang H L, Chen C Y, Gao Y M, Tian Y Y, Wen F, Li Z C. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica, 2008, 133: 187-200.

[15]严建兵, 汤  华, 黄益勤, 石永刚, 李建生, 郑用琏. 不同发育时期玉米株高QTL的动态分析. 科学通报, 2003, 48(18): 1959-1964.

Yan J B, Tang H, Huang Y Q, Shi Y G, Li J S, Zheng Y L. QTL mapping for the developing of the plant height traits in maize. Chinese Science Bulletin, 2003, 48(18): 1959-1964. (in Chinese)

[16]崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. 作物学报, 2007, 33(5): 744-750.

Cui S Y, Yu D Y. QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean [Glycine max(L.) Merr.]. Acta Agronomica Sinica, 2007, 33(5): 744-750. (in Chinese)

[17]韩英鹏, 滕卫丽, 杜玉萍, 孙德生, 张忠臣, 徐香玲. 不同发育时期大豆籽粒干物质积累的QTL动态分析. 中国农业科学, 2010, 43(7): 1328-1338.

Han Y P, Teng W L, Du Y P, Sun D S, Zhang Z C, Xu X L. Dynamic QTL Analysis of dry matter accumulation in soybean seed at different developmental stages. Scientia Agricultura Sinica, 2010, 43(7): 1328-1338. (in Chinese)

[18]Zhang K P, Fang Z J, Liang Y, Tian J C. Genetic dissection of chlorophyⅡ content at different growth stages in common wheat. Journal of Genetics, 2009, 88: 183-189.

[19]刘  宾, 赵  亮, 张坤普, 朱占玲, 田  宾, 田纪春. 小麦株高发育动态QTL定位. 中国农业科学, 2010, 43(22): 4562-4570.

Liu B, Zhao L, Zhang K P, Zhu Z L, Tian B, Tian J C. Genetic dissection of plant height at different growth stages in common wheat. Scientia Agricultura Sinica, 2010, 43(22): 4562-4570. (in Chinese)

[20]Wu X S, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. Journal of Experimental Botany, 2010, 61(11): 2923-2937.

[21]李卫华, 尤明山, 刘  伟, 徐  杰, 刘春雷, 李保云, 刘广田. 小麦GMP含量发育动态的QTL定位. 作物学报, 2006, 32(7): 995-1000.

Li W H, You M S, Liu W, Xu J, Liu C L, Li B Y, Liu G T. QTL mapping for developmental behavior of GMP content in wheat. Acta Agronomica Sinica, 2006, 32(7): 995-1000. (in Chinese)

[22]刘  丽, 李卫华, 刘  伟, 曹连莆, 李保云, 刘广田. 小麦谷蛋白膨胀指数发育动态的QTL分析. 中国农业科学, 2008, 41(11): 3838-3844.

Liu L, Li W H, Liu W, Cao L P, Li B Y, Liu G T. Analysis of QTL for SIG at different developmental stages in wheat. Scientia Agricultura Sinica, 2008, 41(11): 3838-3844. (in Chinese)

[23]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL×environment interactions for plant height using a doubled haploid population in cultivated wheat. Journal of Genetics and Genomics, 2008, 35: 119-127.

[24]朱  军. 运用混合线性模型定位复杂数量性状基因的方法. 浙江大学学报: 工学版, 1999, 33(3): 327-335.

Zhu J. Mixed model approaches of mapping genes for complex quantitative traits. Journal of Zhejiang University: Engineering Science, 1999, 33(3): 327-335. (in Chinese)

[25]Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical and Applied Genetics, 2005, 110: 1268-1274.

[26]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-13.

[27]王月福, 于振文, 李尚霞, 余松烈. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响. 作物学报, 2002, 28(6): 743-748.

Wang Y F, Yu Z W, Li S X, Yu S L. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat. Acta Agronomica Sinica, 2002, 28(6): 743-748. (in Chinese)

[28]王月福, 姜  东, 于振文, 曹卫星. 氮素水平对小麦籽粒产量和蛋白质含量的影响及生理基础. 中国农业科学, 2003, 36(5): 513-520.

Wang Y F, Jiang D, Yu Z W, Cao W X. Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis. Scientia Agricultura Sinica, 2003, 36(5): 513-520. (in Chinese)

[29]朱新开, 周君良, 封超年, 郭文善, 彭永欣. 不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析. 作物学报, 2005, 31(3): 342-347.

Zhu X K, Zhou J L, Feng C N, Guo W S, Peng Y X. Differences of protein and its component accumulation in wheat for different end uses. Acta Agronomica Sinica, 2005, 31(3): 342-347. (in Chinese)

[30]杨延兵, 高荣岐, 尹艳枰, 管延安, 张华文. 不同基因型小麦籽粒蛋白质合成动态及相关酶活性的研究. 华北农学报, 2007, 22(3): 43-47.

Yang Y B, Gao R Q, Yin Y P, Guan Y A, Zhang H W. Studies on the dynamic changes of protein synthesis and the related enzymes in different genotype wheat. Acta Agriculturae Boreali-Sinica, 2007, 22(3): 43-47. (in Chinese)

[31]孙德生, 李文滨, 张忠臣, 陈庆山, 杨庆凯. 大豆株高QTL发育动态分析. 作物学报, 2006, 32(4): 509-514.

Sun D S, Li W B, Zhang Z C, Chen Q S, Yang Q K. Analysis of QTL for plant height at different development stages in soybean. Acta Agronomica Sinica, 2006, 32(4): 509-514. (in Chinese)
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[3] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[4] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[5] YANG YanHui,MA Xiao,ZHANG ZiShan,GUO Jun,LI YueNan,LIANG Ying,SONG JianMin,ZHAO ShiJie. Effects of Drought Stress on Photosynthetic Characteristics of Wheat Near-Isogenic Lines with Different Wax Contents [J]. Scientia Agricultura Sinica, 2018, 51(22): 4241-4251.
[6] ZHAN ShuaiShuai, BAI Lu, XIE Lei, XIA XianChun, REN Yi, Lü WenJuan, QU YanYing, GENG HongWei. Arabinoxylan Feruloyl Transferase Gene Cloning and Development of Functional Markers in Common Wheat [J]. Scientia Agricultura Sinica, 2018, 51(19): 3639-3650.
[7] ZHANG FuYan, CHEN Feng, CHENG ZhongJie, YANG BaoAn, FAN JiaLin, CHEN XiaoJie, ZHANG JianWei, CHEN YunTang, CUI Long. Effects of TaLox-B Alleles on Lipoxygenase Activity and Flour Color in Wheats [J]. Scientia Agricultura Sinica, 2017, 50(8): 1370-1377.
[8] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[9] SHI Jia, ZHAI ShengNan, LIU JinDong, WEI JingXin, BAI Lu, GAO WenWei, WEN WeiE, HE ZhongHu, XIA XianChun, GENG HongWei. Genome-Wide Association Study of Grain Peroxidase Activity in Common Wheat [J]. Scientia Agricultura Sinica, 2017, 50(21): 4212-4227.
[10] LIU XinLun, WANG Chao, NIU LiHua, LIU ZhiLi, ZHANG LuDe, CHEN ChunHuan, ZHANG RongQi, ZHANG Hong, WANG ChangYou, WANG YaJuan, TIAN ZengRong, JI WanQuan. Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid [J]. Scientia Agricultura Sinica, 2017, 50(20): 3908-3917.
[11] WANG Kun-yang, ZHANG Wei, ZHANG Shuang-xi, LIU Hong-wei, WANG Ke, DU Li-pu, LIN Zhi-shan, YE Xing-guo. Effect of Chemical Hybridization Agent SQ-1 and Arabinogalactan Proteins on the Embryos Obtaining in Wheat Intervarietal and Wild Crosses [J]. Scientia Agricultura Sinica, 2016, 49(24): 4824-4832.
[12] ZHANG Yong, HAO Yuan-feng, ZHANG Yan, HE Xin-yao, XIA Xian-chun, HE Zhong-hu. Progress in Research on Genetic Improvement of Nutrition and Health Qualities in Wheat [J]. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298.
[13] HU Xue-xu, SUN Li-juan, ZHOU Gui-ying, WU Li-na, LU Wei, LI Wei-xi, WANG Shuang, YANG Xiu-lan, SONG Jing-ke, WANG Bu-jun. Variations of Wheat Quality in China From 2006 to 2015 [J]. Scientia Agricultura Sinica, 2016, 49(16): 3063-3072.
[14] HUANG Ji-xiang, XIONG Hua-xin, PAN Bing, NI Xi-yuan, ZHANG Xiao-yu, ZHAO Jian-yi. Mapping QTL of Flowering Time and Their Genetic Relationships with Seed Weight in Brassica napus [J]. Scientia Agricultura Sinica, 2016, 49(16): 3073-3083.
[15] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!