Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (8): 1745-1752 .doi: 10.3864/j.issn.0578-1752.2011.08.025

• RESEARCH NOTES • Previous Articles    

Mapping Quantitative Trait Loci Associated with Live Traits in an F2 Lantang x Landrace Resource Population on SSC 1, 4 and 8

LING Fei,ZHANG Hao, CAI Geng-yuan, CHEN Yao-sheng,LI Jia-qi,WANG Chong   

  1. 华南农业大学动物科学学院
  • Received:2010-07-03 Revised:2010-08-13 Online:2011-04-15 Published:2011-04-15
  • Contact: fei ling

Abstract:

【Objective】Pork is an important food source now representing forty-three percent of red meat consumed in the world and is a valuable resource economically in China. It is vital to identfy QTLs associated with economically important traits in pig. 【Method】Sixteen Chinese indigenous Lantang sows were crossed with eight Landrace pig boars to construct the resource population. According to the pig linkage map of USDA-MARC2.0 and the distance between adjacent markers seleted about 10-20 cM intervals, twenty-one microsatellite DNA markers on pig chromosomes 1, 4 and 8 were used for genotyping of the parents F1 and F2 with ABI 377 and then were analysed to map QTL in the web sit (http://latte.cap.ed.ac.uk) with QTL Express software package. The gene frequence was calculated. 【Result】Two putative QTL containing a QTL for body height (BodyHh) and another QTL for body length (BodyLh) found at 68 cM on SSC1 and at 72cM on SSC4 both reached at least suggestive significance at the chromosome-wise (P<0.05), respectively. The former closely linked to SW2185 (67.6cM), explaining 2.22% of phenotypic variation and the latter was located in between SW839 and SW0214.【Conclusion】Two putative QTL including a body height QTL on SSC1 and a body length on SSC4 were identified. These results will facilitate fine mapping efforts to identify genes controlling live traits that can be incorporated into marker-assisted selection programs to accelerate genetic improvement in pig populations.

Key words: pig live trait, quantitative trait loci, microsatellite marker, interval mapping, resource population

[1] LI YongXiang,LI ChunHui,YANG JunPin,YANG Hua,CHENG WeiDong,WANG LiMing,LI FengYan,LI HuiYong,WANG YanBo,LI ShuHua,HU GuangHui,LIU Cheng,LI Yu,WANG TianYu. Genetic Dissection of Heterosis for Huangzaosi, a Foundation Parental Inbred Line of Maize in China [J]. Scientia Agricultura Sinica, 2020, 53(20): 4113-4126.
[2] SHEN ManMan, QU Liang, DOU TaoCun, MA Meng, GUO Jun, LU Jian, HU YuPing, LI YongFeng, WANG KeHua. Genome-Wide Association of Spleen Weight in Layer Chicken [J]. Scientia Agricultura Sinica, 2018, 51(6): 1213-1222.
[3] LIANG HuiZhen, DONG Wei, XU LanJie, YU YongLiang, YANG HongQi, TAN ZhengWei, XU Yang, CHEN XinWei. QTL Mapping for Main Root Length and Lateral Root Number in Soybean at the Seedling Stage in Different N, P and K Environments [J]. Scientia Agricultura Sinica, 2017, 50(18): 3450-3460.
[4] HE Kun-hui, CHANG Li-guo, CUI Ting-ting, QU Jian-zhou, GUO Dong-wei, XU Shu-tu, ZHANG Xing-hua, ZHANG Ren-he, XUE Ji-quan, LIU Jian-chao . Mapping QTL for Plant Height and Ear Height in Maize Under Multi-Environments [J]. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452.
[5] XU Pan, ZHANG Zhen, ZHANG Feng, YANG Bin, DUAN Yan-yu. Identification of Candidate Genes for Hematological Traits by Integrating Gene Expression Profiling and Genome-Wide Association Study in a Porcine Model [J]. Scientia Agricultura Sinica, 2016, 49(2): 348-360.
[6] YU Jin-cheng, LI Zhe, YU Ning, ZHAO Hui. Genetic Analysis of Huoyan Trait Based on F2 Resource Population in Huoyan Goose [J]. Scientia Agricultura Sinica, 2016, 49(19): 3845-3851.
[7] SHI Pei-Qiong-1, YANG Mao-Fa-1, 吕Zhao-Yun-1 , LI Shang-Wei-1, LIAO Qi-Rong-1, SHANG Sheng-Hua-2, XU Jin-1, WU Yi-Bei-1. Genetic Diversity of Helicoverpa assulta (Lepidoptera: Noctuidae) in Guizhou Province [J]. Scientia Agricultura Sinica, 2014, 47(9): 1836-1846.
[8] JIAO Fu-Chao, LI Yong-Xiang, CHEN Lin, LIU Zhi-Zhai, SHI Yun-Su, SONG Yan-Chun, ZHANG Deng-Feng, LI Yu, WANG Tian-Yu. Genetic Dissection for Kernel Row Number in the Specific Maize Germplasm Four-Rowed Waxy Corn [J]. Scientia Agricultura Sinica, 2014, 47(7): 1256-1264.
[9] LU Zhao-Yun , YANG Mao-Fa, SHI Pei-Qiong, LI Shang-Wei, LIAO Qi-Rong, SHANG Sheng-Hua. Genetic Diversity Analysis of Myzus persicae (Sulzer) in Guizhou Province [J]. Scientia Agricultura Sinica, 2013, 46(13): 2685-2694.
[10] ZHANG Chun-Zhi, LIU Lei, SUN Yu-Yan, ZHOU Long-Xi, YANG Yu-Hong, XIE Bing-Yan, LI Jun-Ming. Identification of QTLs Conferring Resistance to Late Blight in Solanum lycopersicoides LA2951 Introgression Line Population [J]. Scientia Agricultura Sinica, 2012, 45(6): 1093-1105.
[11] FENG Min, WANG Chun-Xiao, LIU Yan-Lin. Genetic Diversity of Saccharomyces cerevisiae Strains Revealed by Microsatellite Sequence Polymorphism [J]. Scientia Agricultura Sinica, 2012, 45(12): 2537-2543.
[12] CHEN Mei-xia,QI Jian-min,FANG Ping-ping,LI Ai-qing,WEI Cheng-lin,TAO Ai-fen,XU Jian-tang,XIE Zeng-rong,LIN Pei-qing,LAN Tao,WU Jian-mei,CHEN Fu-cheng
. QTL Mapping of Six Yield Traits in Kenaf
[J]. Scientia Agricultura Sinica, 2011, 44(5): 874-883 .
[13] WANG Xi, LIU Tai-Guo, XIANG Wen-Sheng, CHEN Wan-Quan. Development of a SSR Molecular Marker for Puccinia graminis f. sp. tritici [J]. Scientia Agricultura Sinica, 2011, 44(22): 4593-4599.
[14] ZHAO Pu, LIU Rui-Xiang, LI Cheng-Pu, XING Xiang-Ru, CAO Xiao-Liang, TAO Yong-Sheng, ZHANG Zu-Xin. QTL Mapping for Grain Yield Associated Traits Using Ye 478 Introgression Lines in Maize [J]. Scientia Agricultura Sinica, 2011, 44(17): 3508-3519.
[15] CHENG Zhi-xue,CHEN Qing-hua,PENG Qing-wu,ZHANG Hua,WANG Rui
. Construction of a Molecular Genetic Linkage Map and QTL Analysis of the First Pistillate Flower Node Trait in Chieh-qua
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1508-1515 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!