中国农业科学 ›› 2023, Vol. 56 ›› Issue (1): 17-30.doi: 10.3864/j.issn.0578-1752.2023.01.002
收稿日期:
2022-08-22
接受日期:
2022-10-21
出版日期:
2023-01-01
发布日期:
2023-01-17
通讯作者:
刘列钊
作者简介:
胡盛,E-mail:基金资助:
HU Sheng(),LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao()
Received:
2022-08-22
Accepted:
2022-10-21
Online:
2023-01-01
Published:
2023-01-17
Contact:
LieZhao LIU
摘要:
【目的】干旱是甘蓝型油菜生长发育过程中一种常见的非生物胁迫,严重影响了其产量和品质。联合全基因组关联分析和转录组差异表达分析,筛选干旱胁迫条件下影响甘蓝型油菜籽粒含油量和蛋白质含量变化的候选基因,为解释干旱胁迫下甘蓝型油菜籽粒含油量及蛋白质含量的变化提供理论基础。【方法】利用旱棚盆栽方式模拟干旱胁迫环境,使用183份甘蓝型油菜构成的自然群体,于2019和2020年在模拟干旱胁迫条件下收获2年的籽粒,并进行籽粒含油量以及蛋白质含量的测定,将得到的表型数据与60K芯片的基因型数据(包含34 103个SNP)进行全基因组关联分析,同时,结合相同处理下花后不同干旱时间段(30、40和50 d)的籽粒转录组差异基因数据,筛选共有基因,并利用甘蓝型油菜和拟南芥数据库注释信息、已报道的相关文献和转录组差异基因表达水平鉴定与干旱胁迫下甘蓝型油菜籽粒含油量及蛋白质含量变化相关的候选基因。【结果】通过对2年间籽粒含油量和蛋白质含量的分析,发现材料重复性较好,干旱胁迫造成甘蓝型油菜籽粒的含油量下降,蛋白质含量上升;全基因组关联分析得出的最佳模型主要为一般线性模型下的Q或naïve模型,共检测出38个显著关联位点(P<1/31597或P<1/31278),主要分布在A03(6个)、A04(8个)和C03(8个)染色体,各位点分别对含油量和蛋白质含量变化的贡献率均超过10%,其中含油量变化位点最大贡献率为23.97%,蛋白质含量变化位点最大贡献率为22.21%。通过整合全基因组关联分析和转录组分析,筛选出256个共有基因,根据基因注释和文献报道鉴定出与干旱胁迫下含油量及蛋白质含量变化相关的25个候选基因,其中包含转录因子(如bZIP transcription factor GBF6、TALE transcription factor ATH1、MYB-like Domain transcription factor MYBD、NAC transcription factor ANAC029和ERF transcription factor ERF111)、相关激酶(如与油脂相关的蛋白激酶CIPK9、水分胁迫响应激酶PIP5K1和代谢相关激酶PFK7)、相关蛋白(如与油脂相关转运蛋白ABCA9、与蛋白相关的存储蛋白CRU3、胁迫响应蛋白HUP26和M10、叶绿体蛋白DG238和CP12)等,涉及生长发育、光合反应、物质运输等多个生物学过程。【结论】鉴定出25个相关候选基因,可能响应干旱胁迫,并影响油菜籽粒蛋白质和含油量的积累。
胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30.
HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L.[J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
表1
2019及2020年干旱胁迫及正常处理下籽粒含油量和蛋白质含量统计分析"
环境/年份 Environment/Year | 性状 Trait | 处理 Treatment | 范围 Range (%) | 均值±标准差 Mean± SD | 变异系数 CV (%) |
---|---|---|---|---|---|
重庆2019 CQ2019 | 油脂含量 Oil content | WW | 26.92—44.82 | 38.26±3.31 | 8.65 |
DS1 | 27.14—44.07 | 33.53±2.59** | 7.72 | ||
DS2 | 23.90—42.30 | 32.88±2.44** | 7.41 | ||
蛋白质含量 Protein content | WW | 21.75—33.96 | 28.16±2.18 | 7.75 | |
DS1 | 26.90—36.70 | 31.18±1.48** | 4.75 | ||
DS2 | 27.18—35.91 | 31.41±1.45** | 4.60 | ||
重庆2020 CQ2020 | 油脂含量 Oil content | WW | 28.81—47.14 | 36.45±3.10 | 8.52 |
DS1 | 26.53—38.23 | 31.86±2.43** | 7.63 | ||
DS2 | 25.08—39.49 | 30.71±2.58** | 8.40 | ||
蛋白质含量 Protein content | WW | 24.51—32.98 | 29.31±1.60 | 5.45 | |
DS1 | 27.15—36.02 | 31.42±1.43** | 4.56 | ||
DS2 | 27.62—36.12 | 32.30±1.66** | 5.14 |
表2
2年各处理间籽粒蛋白质和含油量的相关性分析"
年份/性状 Year/Trait | 2019含油量2019_Oil | 2019蛋白质含量2019_Pro | 2020含油量2020_Oil | 2020蛋白质含量2020_Pro | |||||
---|---|---|---|---|---|---|---|---|---|
DS1 | DS2 | DS1 | DS2 | DS1 | DS2 | DS1 | DS2 | ||
2019含油量2019_Oil | DS1 | 1 | |||||||
DS2 | 0.788** | 1 | |||||||
2019蛋白质含量2019_Pro | DS1 | -0.744** | -0.656** | 1 | |||||
DS2 | -0.580** | -0.768** | 0.846** | 1 | |||||
2020含油量2020_Oil | DS1 | -0.008 | -0.049 | 0.099 | 0.115 | 1 | |||
DS2 | 0.036 | -0.076 | 0.090 | 0.134 | 0.576** | 1 | |||
2020蛋白质含量2020_Pro | DS1 | 0.041 | 0.080 | -0.065 | -0.079 | -0.742** | -0.512** | 1 | |
DS2 | 0.069 | 0.108 | -0.086 | -0.081 | -0.340** | -0.666** | 0.605** | 1 |
表3
干旱胁迫下油菜籽粒含油量和蛋白质含量变化显著关联的SNP位点"
性状 Trait | SNP标记 SNP marker | 染色体 Chr. | 位置 Site (bp) | P值 P-value | 贡献率 R2 (%) | 置信区间 Confidence interval (500 kb up/downstream) |
---|---|---|---|---|---|---|
重庆2019含油量 CQ2019_ Oil | Bn-scaff_16888_1-p1803454 | C04 | 45940031 | 2.80E-05 | 14.13 | 45440031—46440031 |
Bn-A06-p19292104 | A06 | 15319939 | 2.99E-05 | 10.82 | 14819939—15819939 | |
Bn-A06-p14864165 | A06 | 16344344 | 5.07E-06 | 16.40 | 15844344—16844344 | |
Bn-scaff_16755_1-p1357741 | C03 | 59428822 | 1.01E-05 | 15.61 | 58928822—59928822 | |
Bn-A06-p5279490 | A04 | 3858538 | 1.38E-05 | 15.25 | 3358538—4358538 | |
Bn-scaff_16755_1-p1427195 | C03 | 59368418 | 1.53E-05 | 15.13 | 58868418—59868418 | |
Bn-A04-p4978478 | A04 | 5117185 | 1.79E-05 | 14.95 | 4617185—5617185 | |
Bn-scaff_19193_1-p527597 | C01 | 5772854 | 2.46E-05 | 12.95 | 5272854—6272854 | |
Bn-scaff_15712_8-p121910 | C04 | 28592068 | 2.73E-05 | 14.46 | 28092068—29092068 | |
Bn-A04-p4418670 | A04 | 4543027 | 3.12E-05 | 14.30 | 4043027—5043027 | |
重庆2020含油量 CQ2020_ Oil | Bn-A04-p17845366 | A04 | 17948897 | 9.77E-07 | 23.97 | 17448897—18448897 |
Bn-scaff_23107_1-p47992 | C05 | 44218 | 8.06E-06 | 19.52 | 0—544218 | |
Bn-A04-p18595858 | A04 | 18723761 | 2.38E-05 | 17.89 | 18223761—19223761 | |
Bn-A04-p18639840 | A04 | 18762292 | 3.09E-05 | 17.20 | 18262292—19262292 | |
Bn-A04-p18620226 | A04 | 18746954 | 3.16E-05 | 17.17 | 18246954—19246954 | |
Bn-A07-p16423207 | A07 | 18399689 | 1.36E-05 | 18.82 | 17899689—18899689 | |
重庆2019蛋白质含量 CQ2019_ Pro | Bn-A06-p5260549 | A04 | 3866976 | 2.70E-06 | 16.69 | 3366976—4366976 |
Bn-scaff_16142_1-p714220 | C01 | 34837361 | 1.00E-05 | 13.43 | 34337361—35337361 | |
Bn-scaff_16092_1-p205960 | C03 | 27846928 | 1.82E-05 | 14.07 | 27346928—28346928 | |
Bn-scaff_18181_1-p1691208 | C05 | 6102902 | 1.87E-05 | 14.11 | 5602902—6602902 | |
Bn-scaff_18549_1-p129072 | C06 | 1368140 | 2.20E-05 | 12.97 | 868140—1868140 | |
Bn-A05-p21188442 | A05 | 19340595 | 3.18E-06 | 16.92 | 18840595—19840595 | |
Bn-A03-p15615278 | A03 | 14676315 | 1.52E-05 | 15.14 | 14176315—15176315 | |
Bn-A03-p24688180 | A03 | 23155012 | 1.58E-05 | 15.10 | 22655012—23655012 | |
Bn-scaff_16755_1-p1327949 | C03 | 59461983 | 3.03E-05 | 14.34 | 58961983—59961983 | |
Bn-scaff_16755_1-p1427195 | C03 | 59368418 | 3.04E-05 | 14.33 | 58868418—59868418 | |
重庆2020蛋白质含量 CQ2020_ Pro | Bn-A08-p18820218 | A08 | 16173557 | 5.73E-07 | 22.21 | 15673557—16673557 |
Bn-A08-p18789560 | A08 | 16143836 | 6.06E-07 | 21.58 | 15643836—16643836 | |
Bn-scaff_16231_1-p203872 | C08 | 21771676 | 6.26E-07 | 21.36 | 21271676—22271676 | |
Bn-A03-p21505530 | A03 | 20289512 | 9.18E-06 | 19.44 | 19789512—20789512 | |
Bn-A03-p21478889 | A03 | 20250601 | 9.32E-06 | 18.72 | 19750601—20750601 | |
Bn-A03-p21357849 | A03 | 20131639 | 9.79E-06 | 19.68 | 19631639—20631639 | |
Bn-A08-p18827698 | A08 | 16181029 | 1.83E-05 | 17.08 | 15681029—16681029 | |
Bn-scaff_18322_1-p2150739 | C03 | 6946175 | 2.35E-05 | 17.38 | 6446175—7446175 | |
Bn-scaff_18322_1-p2147199 | C03 | 6948511 | 2.73E-05 | 14.41 | 6448511—7448511 | |
Bn-A03-p21505363 | A03 | 20289679 | 3.12E-05 | 16.20 | 19789679—20789679 | |
Bn-A01-p1890102 | A01 | 1424609 | 1.08E-05 | 15.34 | 924609—1924609 | |
Bn-scaff_21778_1-p364556 | C03 | 5155386 | 2.01E-05 | 18.89 | 4655386—5655386 |
表4
候选基因鉴定"
候选基因 Candidate genes | 物理位置 Physical position(bp) | 拟南芥同源基因 Homologs in Arabidopsis | 功能注释 Function annotation |
---|---|---|---|
BnaC05g00760D | Chr.C05:398202-401549 | AT1G01140 | CBL相互作用蛋白激酶,在油菜以及拟南芥中调节种子油含量 CBL-interacting protein kinase (CIPK9), involved in seed oil regulation in Brassica napus L. and Arabidopsis |
BnaA03g40520D | Chr.A03:20244987-20246636 | AT5G61730 | ABC转运蛋白,其过表达能提高油料植物种子含油量和产量 ABC transporter protein (ABCA9), ABCA9-OEs can increase the oil content and yield of oil plant seeds |
BnaC01g09900D | Chr.C01:5867929-5870050 | AT4G28520 | 种子储藏蛋白,对蛋白积累起到重要作用 Seed storage protein (CRU3) plays a key role in protein accumulation |
BnaA06g24040D | Chr.A06:16613640-16616541 | AT5G65110 | 编码一种参与长链脂肪酸生物合成的酰基辅酶 Encodes an acyl-CoA (ACX2) that involves in long chain fatty acid biosynthesis |
BnaA01g03890D | Chr.A01:1798245-1799923 | AT4G32980 | TALE转录因子,参与光形态建设 TALE transcription factor (ATH1) involved in photomorphogenesis |
BnaA01g02570D | Chr.A01:1280574-1281038 | AT4G34590 | bZIP转录因子,参与氨基酸代谢 bZIP transcription factor (GBF6) involved in amino acid metabolism |
BnaA07g24010D | Chr.A07:17937117-17938262 | AT1G70000 | MYB类结构域转录因子,响应光合细胞分裂素,增加花青素积累 MYB-like Domain transcription factor (MYBD) that responses to light, cytokinins and anthocyanin accumulation |
BnaA07g24270D | Chr.A07:18152148-18153317 | AT1G69490 | NAC转录因子,响应ABA,调节叶片衰老 NAC transcription factor (ANAC029) that responses to ABA signal and regulates leaf senescence |
BnaA06g23710D | Chr.A06:16462716-16465107 | AT5G64750 | ERF转录因子,参与植物发育过程和胁迫响应 ERF transcription factor (ERF111) that involves in plant development processes and stress responses |
BnaA04g25300D | Chr.A04:18254430-18255160 | AT2G43670 | 碳水化合物结合X8结构域超家族蛋白 Carbohydrate-binding X8 domain superfamily protein |
BnaC01g09810D | Chr.C01:5790810-5791936 | AT4G28660 | 类植物光系统Ⅱ中PsbW亚基,参与组装和修复光系统Ⅱ复合体 Similar to PsbW subunit of photosystem II(PSB8), implicated in the assembly and repair of the photosystem II complex |
BnaA05g26270D | Chr.A05:19264359-19265918 | AT3G12930 | 一种新型叶绿体蛋白,参与叶绿体发育 A novel chloroplast protein (DG238) that involves in chloroplast development |
BnaA04g26990D | Chr.A04:19060731-19061503 | AT2G47400 | 一种叶绿体蛋白,响应光反应,参与碳代谢过程 A chloroplast protein (CP12) that responds to a light response and is involved in carbon metabolism processes |
BnaA01g02610D | Chr.A01:1304663-1306004 | AT4G34540 | 叶片衰老的遗传变异,与还原酶相似,GSV1变异在发育中起着重要作用 Genetic Variants in leaf Senescence (GVS1), similarity to reductase, GSV1 variant plays an important role in development |
BnaA03g30440D | Chr.A03:14777856-14781737 | AT3G10020 | 缺氧反应未知蛋白,增强环境耐受性 Hypoxia response unknown protein 26 (HUP26), enhances environment tolerance |
BnaA03g40640D | Chr.A03:20311931-20313526 | AT5G67500 | 编码一个电压依赖性阴离子通道蛋白,在拟南芥中参与生长发育,响应干旱胁迫以及盐胁迫 Encodes a voltage-dependent anion channel (VDAC2), involved in growth and response to drought stress and salt stress |
BnaA04g23790D | Chr.A04:17566194-17567208 | AT2G41280 | 类晚期胚胎丰富蛋白,能被脱落酸、盐胁迫以及干旱胁迫抑制表达 Similar to Late Embryogenesis Activated (LEA) protein (M10), Inhibited expression by ABA, salt stress and drought stress |
BnaC03g10560D | Chr.C03:5070625-5073146 | AT5G21280 | 一种响应氧化反应和非生物胁迫的特异性基因 A specific gene (ATR7) that responses to oxidative and abiotic stresses |
BnaA08g21050D | Chr.A08:15685703-15689509 | AT1G21980 | 编码Ⅰ型磷脂酰肌醇-4-磷酸5-激酶,响应水分胁迫信号 Encodes Type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K1) that responses to water-stress signal |
BnaC03g13370D | Chr.C03:6467762-6470298 | AT5G56630 | 磷酸果糖激酶7,调节叶片代谢,促进生长发育 Phosphofructokinase 7(PFK7), Regulates leaf metabolism and promotes development |
BnaA03g40200D | Chr.A03:20093860-20095203 | AT5G61440 | 定位在叶绿体中的氧硫还家族蛋白 The thioredoxin family protein(ACHT5), located in the chloroplast |
BnaA03g41120D | Chr.A03:20618565-20619734 | AT3G51030 | 定位在胞质中的氧硫还家族蛋白 The thioredoxin family protein(TRX1), located in the cytosolic |
BnaA08g21800D | Chr.A08:16019052-16021113 | AT5G38120 | AMP依赖性合成酶与连接酶家族蛋白 AMP-dependent synthetase and ligase family protein (4-CL8) |
BnaC01g09540D | Chr.C01:5573226-5579124 | AT3G23890 | 定位在细胞核中的拓扑异构酶Ⅱ蛋白 A topoisomerase II protein (TOP II), located in nucleus |
BnaA04g26710D | Chr.A04:18885632-18889024 | AT2G46700 | 钙依赖蛋白激酶3促进靶蛋白磷酸化 CDPK kinase 3 (CRK3) promotes phosphorylation of target proteins |
[1] | 王忠. 植物生理学. 北京: 中国农业出版社, 1999: 451-455. |
WANG Z. Plant Physiology. BeiJing: China Agriculture Press, 1999: 451-455. (in Chinese) | |
[2] |
ZHANG X K, LU G Y, LONG W H, ZOU X L, LI F, NISHIO T. Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Science, 2014, 64(1): 60-73.
doi: 10.1270/jsbbs.64.60 |
[3] |
DIETZ K J, ZÖRB C, GEILFUS C M. Drought and crop yield. Plant Biology, 2021, 23(6): 881-893.
doi: 10.1111/plb.13304 pmid: 34396653 |
[4] | WIJEWARDANA C, REDDY K R, KRUTZ L J, GAO W, BELLALOUI N. Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS ONE, 2019, 14(9): e0214977. |
[5] | ZHANG Y B, YANG S L, DAO J M, DENG J, SHAHZAD A N, FAN X, LI R D, QUAN Y J, BUKHARI S A H, ZENG Z H. Drought- induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS ONE, 2020, 15(7): e0235845. |
[6] |
YANG X L, WANG B F, CHEN L, LI P, CAO C G. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 2019, 9: 3742.
doi: 10.1038/s41598-019-40161-0 pmid: 30842474 |
[7] |
JOSHAN Y, SANI B, JABBARI H, MOZAFARI H, MOAVENI P. Effect of drought stress on oil content and fatty acids composition of some safflower genotypes. Plant Soil and Environment 2019, 65(11): 563-567.
doi: 10.17221/591/2019-PSE |
[8] |
HATZIG S V, NUPPENAU J N, SNOWDON R J, SCHIEßL S V. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biology, 2018, 18(1): 297.
doi: 10.1186/s12870-018-1531-y |
[9] |
HU Q, HUA W, YIN Y, ZHANG X, LIU L, SHI J, ZHAO Y, QIN L, CHEN C, WANG H. Rapeseed research and production in China. The Crop Journal, 2017, 5(2): 127-135.
doi: 10.1016/j.cj.2016.06.005 |
[10] |
LI B Q, CHEN L, SUN W N, WU D, WANG M J, YU Y, CHEN G X, YANG W N, LIN Z, ZHANG X L, DUAN L F, YANG X Y. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnology Journal, 2020, 18(12): 2533-2544.
doi: 10.1111/pbi.13431 |
[11] |
WEN L W, CHANG H X, BROWN P J, DOMIER L L, HARTMAN G L. Genome-wide association and genomic prediction identifies soybean cyst nematode resistance in common bean including a syntenic region to soybean Rhg1 locus. Horticulture Research, 2019, 6: 9.
doi: 10.1038/s41438-018-0085-3 |
[12] |
HUANG X H, WEI X H, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C Y, ZHU C R, LU T T, ZHANG Z W, LI M, FAN D L, GUO Y L, WANG A H, WANG L, DENG L W, LI W J, LU Y Q, WENG Q J, LIU K Y, HUANG T, ZHOU T Y, JING Y F, LI W, LIN Z, BUCKLER E S, QIAN Q, ZHANG Q F, LI J Y, HAN B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
doi: 10.1038/ng.695 pmid: 20972439 |
[13] |
XIAO Z C, ZHANG C, TANG F, YANG B, ZHANG L Y, LIU J S, HUO Q, WANG S F, LI S T, WEI L J, DU H, QU C M, LU K, LI J N, LI N N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnology for Biofuels, 2019, 12: 216.
doi: 10.1186/s13068-019-1557-x |
[14] |
TANG M Q, ZHANG Y, LIU Y, TONG C, CHENG X, ZHU W, LI Z, HUANG J, LIU S. Mapping loci controlling fatty acid profiles, oil and protein content by genome-wide association study in Brassica napus. The Crop Journal, 2019, 7(2): 217-226.
doi: 10.1016/j.cj.2018.10.007 |
[15] |
KHANZADA H, WASSAN G M, HE H, MASON A S, KEERIO A A, KHANZADA S, FAHEEM M, SOLANGI A M, ZHOU Q, FU D, HUANG Y, RASHEED A. Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. Journal of Advanced Research, 2020, 24: 447-461.
doi: 10.1016/j.jare.2020.05.019 |
[16] |
ZHANG J, MASON A S, WU J, LIU S, ZHANG X C, LUO T, REDDEN R, BATLEY J, HU L Y, YAN G J. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Frontiers in Plant Science, 2015, 6: 1058.
doi: 10.3389/fpls.2015.01058 pmid: 26640475 |
[17] | XU L P, HU K N, ZHANG Z Q, GUAN C Y, CHEN S, HUA W, LI J N, WEN J, YI B, SHEN J X, MA C Z, TU J X, FU T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research, 2015, 23(1): 43-52. |
[18] |
QU C M, LI S M, DUAN X J, FAN J H, JIA L D, ZHAO H Y, LU K, LI J N, XU X F, WANG R. Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L.. Genes (Basel), 2015, 6: 1215-1229.
doi: 10.3390/genes6041215 |
[19] |
BRADBURY P J, ZHANG Z W, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[20] |
LI Y, ZHANG L, HU S, ZHANG J, WANG L, PING X, WANG J, LI J, LU K, TANG Z, LIU L. Transcriptome and proteome analyses of the molecular mechanisms underlying changes in oil storage under drought stress in Brassica napus L.. GCB Bioenergy, 2021, 13: 1071-1086.
doi: 10.1111/gcbb.12833 |
[21] |
TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036 |
[22] |
LU K, WEI L J, LI X L, WANG Y T, WU J, LIU M, ZHANG C, CHEN Z Y, XIAO Z C, JIAN H J, CHENG F, ZHANG K, DU H, CHENG X C, QU C M, QIAN W, LIU L Z, WANG R, ZOU Q Y, YING J M, XU X F, MEI J Q, LIANG Y, CHAI Y R, TANG Z L, WAN H F, NI Y, HE Y J, LIN N, FAN Y H, SUN W, LI N N, ZHOU G, ZHENG H K, WANG X W, PATERSON A H, LI J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications, 2019, 10: 1154.
doi: 10.1038/s41467-019-09134-9 |
[23] | RAZA A, RAZZAQ A, MEHMOOD S S, HUSSAIN M A, SU W, HUANG H, ZAMAN Q U, ZHANG X K, CHENG Y, HASANUZZAMAN M. Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L.. GM Crops & Food, 2021, 12(1): 251-281. |
[24] | BATOOL M, EL-BADRI A M, HASSAN M U, YANG H Y, WANG C Y, YAN Z K, KUAI J, BO W, ZHOU G S. Drought stress in Brassica napus: Effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 2022: 1-25. |
[25] | BIANCHETTI G, CLOUET V, LEGEAI F, BARON C, GAZENGEL K, CARRILLO A, MANZANARES-DAULEUX M J, BUITINK J, NESI N. RNA sequencing data for responses to drought stress and/or clubroot infection in developing seeds of Brassica napus. Data in Brief, 2021, 38: 107392. |
[26] |
CHOUDHURY S, LARKIN P, XU R G, HAYDEN M, FORREST K, MEINKE H, HU H L, ZHOU M X, FAN Y. Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat. BMC Genomics, 2019, 20(1): 891.
doi: 10.1186/s12864-019-6249-1 pmid: 31752676 |
[27] |
ZHENG X M, GONG T, OU H L, XUE D Y, QIAO W H, WANG J R, LIU S, YANG Q W, OLSEN K M. Genome-wide association study of rice grain width variation. Genome, 2018, 61(4): 233-240.
doi: 10.1139/gen-2017-0106 |
[28] |
PACE J, GARDNER C, ROMAY C, GANAPATHYSUBRAMANIAN B, LÜBBERSTEDT T. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015, 16(1): 47.
doi: 10.1186/s12864-015-1226-9 |
[29] |
LIU S, FAN C C, LI J N, CAI G Q, YANG Q Y, WU J, YI X Q, ZHANG C Y, ZHOU Y M. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theoretical and Applied Genetics, 2016, 129(6): 1203-1215.
doi: 10.1007/s00122-016-2697-z |
[30] |
FLETCHER R S, HERRMANN D, MULLEN J L, LI Q F, SCHRIDER D R, PRICE N, LIN J J, GROGAN K, KERN A, MCKAY J K. Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing. G3 (Bethesda), 2016, 6(4): 793-803.
doi: 10.1534/g3.115.021279 |
[31] |
SABAGH E A, HOSSAIN A, BARUTÇULAR C, ISLAM M S, RATNASEKERA D, KUMAR N, MEENA R S, GHARIB H, SANEOKA H, TEIXEIRA D S J. Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: A critical review. Australian Journal of Crop Science, 2019, 13: 88-97.
doi: 10.21475/ajcs.19.13.01.p1284 |
[32] | ZAHEDI H, TOHIDI MOGHADAM H R. Effect of drought stress on antioxidant enzymes activities with zeolite and selenium application in canola cultivars. Research on Crops, 2011, 12: 388-392. |
[33] | ZAMANI S, NEZAMI M T, HABIBI D, KHORSHIDI M. Effect of quantitative and qualitative performance of four canola cultivars (Brassica napus L.) to salinity conditions. Advances in Environmental Biology, 2010, 4: 422-427. |
[34] |
MOHAMMADI M, GHASSEMI-GOLEZANI K, CHAICHI M R, SAFIKHANI S. Seed oil accumulation and yield of safflower affected by water supply and harvest time. Agronomy Journal, 2018, 110(2): 586-593.
doi: 10.2134/agronj2017.06.0365 |
[35] |
GUO Y L, HUANG Y, GAO J, PU Y Y, WANG N, SHEN W Y, WEN J, YI B, MA C Z, TU J X, FU T D, ZOU J T, SHEN J X. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnology for Biofuels, 2018, 11: 124.
doi: 10.1186/s13068-018-1122-z |
[36] |
CAI G Q, WANG G L, KIM S C, LI J W, ZHOU Y M, WANG X M. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. Biotechnology for Biofuels, 2021, 14(1): 49.
doi: 10.1186/s13068-021-01899-w pmid: 33640013 |
[37] |
GRAMI B, STEFANSSON B R, BAKER R J. Genetics of protein and oil content in summer rape: Heritability, number of effective factors, and correlations. Canadian Journal of Plant Science, 1977, 57(3): 937-943.
doi: 10.4141/cjps77-134 |
[38] |
GOFFMAN F D, ALONSO A P, SCHWENDER J, SHACHAR-HILL Y, OHLROGGE J B. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiology, 2005, 138(4): 2269-2279.
pmid: 16024686 |
[39] |
KWAK J S, KIM S I, PARK S W, SONG J T, SEO H S. E3 SUMO ligase AtSIZ1 regulates the cruciferin content of Arabidopsis seeds. Biochemical and Biophysical Research Communications, 2019, 519(4): 761-766.
doi: 10.1016/j.bbrc.2019.09.064 |
[40] |
XIONG J L, DAI L L, MA N, ZHANG C L. Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regulation, 2018, 85(1): 73-90.
doi: 10.1007/s10725-018-0374-8 |
[41] |
KOESLIN-FINDEKLEE F, RIZI V S, BECKER M A, PARRA- LONDONO S, ARIF M, BALAZADEH S, MUELLER-ROEBER B, KUNZE R, HORST W J. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Plant Science, 2015, 233: 174-185.
doi: 10.1016/j.plantsci.2014.11.018 |
[42] |
TANG S, PENG F, TANG Q, XIA H, YAO X, LU S, GUO L. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. Journal of Advanced Research, 2022, 42: 29-40.
doi: 10.1016/j.jare.2022.07.008 |
[43] | HUANG K L, ZHANG M L, MA G J, WU H, WU X M, REN F, LI X B. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. PLoS ONE, 2017, 12(6): e0179027. |
[44] | ZHOU Z J, LIN B G, TAN J J, HAO P F, HUA S J, DENG Z P. Tandem mass tag-based quantitative proteomics reveals implication of a late embryogenesis abundant protein (BnLEA57) in seed oil accumulation in Brassica napus L.. Frontiers in Plant Science, 2022, 13: 907244. |
[1] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[2] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[3] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[4] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[5] | 李恒,字向东,王会,熊燕,吕明杰,刘宇,蒋旭东. 基于全基因组重测序的山羊产羔数性状关键调控基因的筛选[J]. 中国农业科学, 2022, 55(23): 4753-4768. |
[6] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[7] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[8] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[9] | 李刚,白阳,贾子颖,马正阳,张祥池,李春艳,李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[10] | 汝晨,胡笑涛,吕梦薇,陈滇豫,王文娥,宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55(17): 3303-3320. |
[11] | 赵晓慧,张艳艳,戎亚思,段剑钊,贺利,刘万代,郭天财,冯伟. 不同水氮条件下冬小麦穗器官临界氮稀释模型研究[J]. 中国农业科学, 2022, 55(17): 3321-3333. |
[12] | 李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(13): 2485-2499. |
[13] | 孟雨,温鹏飞,丁志强,田文仲,张学品,贺利,段剑钊,刘万代,冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价[J]. 中国农业科学, 2022, 55(13): 2538-2551. |
[14] | 王娟, 马晓梅, 周小凤, 王新, 田琴, 李成奇, 董承光. 棉花产量构成因素性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(12): 2265-2277. |
[15] | 崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(1): 219-232. |
|