中国农业科学 ›› 2022, Vol. 55 ›› Issue (12): 2265-2277.doi: 10.3864/j.issn.0578-1752.2022.12.001
王娟1(),马晓梅1,周小凤1,王新1,田琴1,李成奇2(),董承光1()
收稿日期:
2022-01-17
接受日期:
2022-03-21
出版日期:
2022-06-16
发布日期:
2022-06-23
通讯作者:
李成奇,董承光
作者简介:
王娟,E-mail: 基金资助:
WANG Juan1(),MA XiaoMei1,ZHOU XiaoFeng1,WANG Xin1,TIAN Qin1,LI ChengQi2(),DONG ChengGuang1()
Received:
2022-01-17
Accepted:
2022-03-21
Online:
2022-06-16
Published:
2022-06-23
Contact:
ChengQi LI,ChengGuang DONG
摘要:
【目的】 对铃重、衣分、单株铃数和籽指等棉花产量构成因素性状进行全基因组关联分析(genome-wide association study,GWAS),发掘与其关联的标记位点、优异等位变异及候选基因,为棉花产量的分子育种提供理论依据。【方法】 以408份陆地棉品种(系)资源为材料,利用Cotton SNP 80K芯片,对6个环境的铃重、衣分、单株铃数和籽指4个产量构成因素性状进行基于混合线性模型(mixed linear model,MLM)的全基因组关联分析,检测与产量构成因素性状显著关联的位点、优异等位变异;进一步依据转录组数据的基因表达量,在显著关联的位点侧翼序列1 Mb区间挖掘可能的候选基因。【结果】 4个产量构成因素性状在不同环境下均表现出广泛的表型变异,其中,单株铃数变异系数最大为16.67%—22.66%,各性状的遗传率为48.4%—92.2%;除铃重与衣分间相关性不显著外,其他性状间均呈显著或极显著相关性;基于6个环境各性状表型数据的最佳线性无偏预测值(best linear unbiased prediction,BLUP),GWAS共检测到分布于基因组的7个区间内23个与目标性状关联的SNP位点,其中,与铃重关联的位点5个,与衣分关联的位点1个,与单株铃数关联的位点9个,与籽指关联的位点8个,有3个位点(TM21094、TM21102和TM57382)同时与多个目标性状关联;鉴定到7个最优SNP位点的优异等位变异,分别为TM21099(TT)、TM57382(GG)、TM78920(CC)、TM53448(TT)、TM59015(AA)、TM43412(GG)和TM69770(AA);利用转录组数据分析,在基因组的7个区间筛选到158个与产量形成可能的候选基因,GO富集分析和KEGG代谢途径分析发现,候选基因功能类别多样并参与了多种代谢途径。【结论】 在陆地棉品种(系)群体中共鉴定到23个与产量构成因素性状关联的SNP位点,筛选到158个可能与产量性状相关的候选基因。
王娟, 马晓梅, 周小凤, 王新, 田琴, 李成奇, 董承光. 棉花产量构成因素性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(12): 2265-2277.
WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.)[J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
表1
产量构成因素性状的统计分析"
性状 Trait | 环境 Environment | 最小值 Min | 最大值 Max | 平均数 Mean | 标准差 SD | 变异系数 CV (%) | G | G×E | 遗传率 <BOLD>H</BOLD>2 (%) |
---|---|---|---|---|---|---|---|---|---|
铃重 BW | SHZ13 | 3.10 | 7.60 | 5.57 | 0.56 | 10.05 | ** | 78.0 | |
KRL13 | 3.90 | 7.90 | 5.54 | 0.56 | 10.11 | ||||
SHZ14 | 3.80 | 7.70 | 5.69 | 0.59 | 10.37 | ||||
KRL14 | 4.00 | 7.50 | 5.70 | 0.58 | 10.18 | ||||
SHZ15 | 3.90 | 7.10 | 5.43 | 0.53 | 9.76 | ||||
KRL15 | 4.30 | 8.60 | 6.19 | 0.67 | 10.82 | ||||
BLUP | 4.22 | 7.16 | 5.64 | 0.41 | 7.27 | ||||
衣分 LP | SHZ13 | 31.90 | 56.10 | 43.86 | 3.26 | 7.43 | ** | ** | 92.2 |
KRL13 | 31.50 | 50.30 | 41.73 | 3.05 | 7.31 | ||||
SHZ14 | 28.70 | 48.80 | 39.99 | 3.31 | 8.28 | ||||
KRL14 | 27.50 | 48.40 | 39.12 | 3.46 | 8.84 | ||||
SHZ15 | 28.10 | 47.20 | 39.48 | 3.43 | 8.69 | ||||
KRL15 | 28.00 | 48.20 | 39.56 | 3.68 | 9.30 | ||||
BLUP | 30.28 | 48.42 | 40.84 | 2.90 | 7.10 | ||||
单株铃数 BN | SHZ13 | 2.30 | 10.90 | 4.28 | 0.94 | 21.96 | ** | * | 48.8 |
KRL13 | 3.10 | 9.50 | 5.50 | 0.96 | 17.45 | ||||
SHZ14 | 3.70 | 11.10 | 6.16 | 1.14 | 18.51 | ||||
KRL14 | 5.10 | 16.30 | 7.92 | 1.56 | 19.70 | ||||
SHZ15 | 3.00 | 10.80 | 5.87 | 1.33 | 22.66 | ||||
KRL15 | 4.00 | 11.30 | 6.00 | 1.00 | 16.67 | ||||
BLUP | 4.82 | 8.04 | 5.95 | 0.50 | 8.40 | ||||
籽指 SI | SHZ13 | 7.50 | 16.20 | 10.13 | 1.16 | 11.45 | ** | ** | 85.4 |
KRL13 | 8.00 | 16.70 | 10.29 | 1.24 | 12.05 | ||||
SHZ14 | 8.30 | 17.80 | 11.15 | 1.27 | 11.39 | ||||
KRL14 | 8.20 | 18.80 | 11.16 | 1.39 | 12.46 | ||||
SHZ15 | 6.50 | 16.40 | 10.53 | 1.20 | 11.40 | ||||
KRL15 | 8.10 | 18.50 | 11.49 | 1.36 | 11.84 | ||||
BLUP | 8.75 | 16.17 | 10.71 | 1.01 | 9.43 |
表2
产量构成因素性状的关联分析"
性状 Trait | SNP位点 SNP locus | 染色体 Chromosome | 位置 Position (bp) | 等位基因 Allele | -log10(<BOLD>P</BOLD>) |
---|---|---|---|---|---|
铃重 BW | TM21099 | A07 | 70392221 | T/C | 6.07 |
TM21097 | A07 | 70365245 | T/C | 5.92 | |
TM21094 | A07 | 70345913 | T/C | 5.60 | |
TM58956 | D06 | 1287377 | A/G | 5.11 | |
TM21102 | A07 | 70411236 | A/G | 4.90 | |
衣分LP | TM57382 | D05 | 18043944 | A/G | 4.74 |
单株铃数 BN | TM78920 | D12 | 42319440 | A/C | 6.80 |
TM78922 | D12 | 42325933 | T/C | 6.49 | |
TM78921 | D12 | 42322642 | T/A | 6.09 | |
TM53448 | D03 | 1908727 | T/C | 5.59 | |
TM53452 | D03 | 1940517 | T/C | 5.33 | |
TM53460 | D03 | 1989801 | T/C | 5.24 | |
TM78919 | D12 | 42306456 | T/C | 5.18 | |
TM59015 | D06 | 1782860 | A/G | 5.17 | |
TM53454 | D03 | 1950689 | T/C | 5.11 | |
籽指 SI | TM43412 | A13 | 5005690 | A/G | 6.75 |
TM21094 | A07 | 70345913 | T/C | 5.15 | |
TM69770 | D08 | 62547519 | A/T | 5.11 | |
TM43413 | A13 | 5012761 | A/G | 4.98 | |
TM21098 | A07 | 70381299 | T/C | 4.94 | |
TM21102 | A07 | 70411236 | A/G | 4.90 | |
TM57382 | D05 | 18043944 | T/C | 4.84 | |
TM21111 | A07 | 70492663 | A/G | 4.75 |
表4
本研究关联位点与前人研究比较"
性状 Trait | SNP位点 SNP locus | 染色体 Chr. | SNP位置 SNP position (bp) | 目标区间 Target region (bp) | 前人研究 Previous studies |
---|---|---|---|---|---|
铃重 BW | TM21099 | A07 | 70392221 | 69892221—70892221 | BW (qBW)[ |
衣分LP | TM57382 | D05 | 18043944 | 17543944—18543944 | BN (qNB-D5-1)[ |
单株铃数 BN | TM78920 | D12 | 42319440 | 41819440—42819440 | LY (qLY-C26-1)[ |
TM53448 | D03 | 1908727 | 1408727—2408727 | LP (D03: 1424880)[ | |
TM59015 | D06 | 1782860 | 1282860—2282860 | ||
籽指 SI | TM43412 | A13 | 5005690 | 4505690—5505690 | SI (A13: 4741980)[ |
TM69770 | D08 | 62547519 | 62047519—63047519 |
[1] | 中国农业科学院棉花研究所. 中国棉花遗传育种学. 济南: 山东科学技术出版社, 2003: 562. |
Cotton Research Institute, the Chinese Academy of Agricultural Sciences. Genetics and Breeding of Cotton in China. Jinan: Shandong Science and Technology Press, 2003: 562. (in Chinese) | |
[2] | 喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016, 49(18): 3465-3476. |
YU S X, FAN S L, WANG H T, WEI H L, PANG C Y. Progresses in research on cotton high yield breeding in China. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476. (in Chinese) | |
[3] | YIN J M, WU Y T, ZHANG J, ZHANG T Z, GUO W Z, ZHU X F. Tagging and mapping of QTLs controlling lint yield and yield components in upland cotton (Gossypium hirsutum L.) using SSR and RAPD markers. Chinese Journal of Biotechnology, 2002, 18: 162-166. |
[4] |
HE D H, LIN Z X, ZHANG X L, NIE Y C, GUO X P, FENG C D, STEWART J M. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica, 2005, 144: 141-149.
doi: 10.1007/s10681-005-5297-6 |
[5] | 王沛政, 秦利, 苏丽, 胡保民, 张天真. 新疆陆地棉主栽品种部分产量性状QTL的标记与定位. 中国农业科学, 2008, 41(10): 2947-2956. |
WANG P Z, QIN L, SU L, HU B M, ZHANG T Z. QTL mapping of the partial yield components of main upland cotton cultivars planted in Xinjiang. Scientia Agricultural Sinica, 2008, 41(10): 2947-2956. (in Chinese) | |
[6] |
陈利, 张正圣, 胡美纯, 王威, 张建, 刘大军, 郑靓, 郑风敏, 马靖. 陆地棉遗传图谱构建及产量和纤维品质性状QTL定位. 作物学报, 2008, 34(7): 1199-1205.
doi: 10.3724/SP.J.1006.2008.01199 |
CHEN L, ZHANG Z S, HU M C, WANG W, ZHANG J, LIU D J, ZHENG L, ZHENG F M, MA J. Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica, 2008, 34(7): 1199-1205. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01199 |
|
[7] |
MA X X, DING Y Z, ZHOU B L, GUO W Z, ZHANG T Z. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium. Journal of Genetics and Genomics, 2008, 35(12): 751-762.
doi: 10.1016/S1673-8527(08)60231-3 |
[8] |
秦永生, 刘任重, 梅鸿献, 张天真, 郭旺珍. 陆地棉产量相关性状的QTL定位. 作物学报, 2009, 35(10): 1812-1821.
doi: 10.3724/SP.J.1006.2009.01812 |
QIN Y S, LIU R Z, MEI H X, ZHANG T Z, GUO W Z. QTL mapping for yield traits in Upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica, 2009, 35(10): 1812-1821. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01812 |
|
[9] | 林忠旭, 冯常辉, 郭小平, 张献龙. 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析. 中国农业科学, 2009, 42(9): 3036-3047. |
LIN Z X, FENG C H, GUO X P, ZHANG X L. Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in Upland cotton. Scientia Agricultural Sinica, 2009, 42(9): 3036-3047. (in Chinese) | |
[10] |
WU J X, GUTIERREZ O A, JENKINS J N, MCCARTY J C, ZHU J. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica, 2009, 165: 231-245.
doi: 10.1007/s10681-008-9748-8 |
[11] |
GUO X, GUO Y P, MA J, WANG F, SUN M Z, GUI L J, ZHOU J J, SONG X L, SUN X Z, ZHANG T Z. Mapping heteroticloci for yield and agronomic traits using chromosome segment introgression lines in cotton. Journal of Integrative Plant Biology, 2013, 55: 759-774.
doi: 10.1111/jipb.12054 |
[12] |
YU J W, ZHANG K, LI S Y, YU S X, ZHAI H H, WU M, LI X L, FAN S L, SONG M Z, YANG D G, LI Y H, ZHANG J F. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics, 2013, 126: 275-287.
doi: 10.1007/s00122-012-1980-x |
[13] |
YU J W, YU S X, GORE M, WU M, ZHAI H H, LI X L, FAN S L, SONG M Z, ZHANG J F. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica, 2013, 191: 375-389.
doi: 10.1007/s10681-013-0875-5 |
[14] |
NING Z Y, ZHAO R, CHEN H, AI N J, ZHAN X, ZHAO J, MEI H X, WANG P, GUO W Z, ZHANG T Z. Molecular tagging of a major quantitative trait locus for broad-spectrum resistance to verticillium wilt in upland cotton cultivar Prema. Crop Science, 2013, 53: 2304-2312.
doi: 10.2135/cropsci2012.12.0694 |
[15] |
LIU R Z, AI N J, ZHU X X, LIU F J, GUO W Z, ZHANG T Z. Genetic analysis of plant height using two immortalized populations of “CRI12 × J8891” in Gossypium hirsutum L.. Euphytica, 2014, 196: 51-61.
doi: 10.1007/s10681-013-1013-0 |
[16] |
SHAO Q S, ZHANG F J, LIU Y, FANG X M, LIU D J, ZHANG J, TENG Z H, PATERSON A H, ZHANG Z S. Identifying QTL for fiber quality traits with three upland cotton (Gossypium hirsutum L.) populations. Euphytica, 2014, 198: 43-58.
doi: 10.1007/s10681-014-1082-8 |
[17] |
GUPTA P K, RUSTGI S, KULWAL P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 2005, 57(4): 461-485.
doi: 10.1007/s11103-005-0257-z |
[18] |
HUANG C, NIE X H, SHEN C, YOU C Y, LI W, ZHAO W X, ZHANG X L, LIN Z X. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnology Journal, 2017, 15(11): 1374-1386.
doi: 10.1111/pbi.12722 |
[19] |
SU J J, LI L B, ZHANG C, WANG C X, GU L J, WANG H T, WEI H L, LIU Q B, HUANG L, YU S X. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theoretical and Applied Genetics, 2018, 131: 1299-1314.
doi: 10.1007/s00122-018-3079-5 |
[20] |
LI C Q, WANG Y Y, AI N J, LI Y, SONG J F. A genome-wide association study of early-maturation traits in upland cotton based on the cotton SNP 80K array. Journal of Integrative Plant Biology, 2018, 60(10): 970-985.
doi: 10.1111/jipb.12673 |
[21] |
FU Y Z, DONG C G, WANG J, WANG Y Y, LI C Q. Genome-wide association study reveals the genetic control underlying node of the first fruiting branch and its height in Upland cotton (Gossypium hirsutum L.). Euphytica, 2019, 215(35): 1-14.
doi: 10.1007/s10681-018-2319-8 |
[22] |
LI L B, ZHANG C, HUANG J Q, LIU Q B, WEI H L, WANG H T, LIU G Y, GU L J, YU S X. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal, 2021, 19(1): 109-123.
doi: 10.1111/pbi.13446 |
[23] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点基因组关联分析及候选基因预测. 中国农业科学, 2022, 55(2): 248-264. |
XIE X Y, WANG K H, QIN X X, WANG C X, SHI C H, NING X Z, YANG Y L, QIN J H, LI C Z, MA Q, SU J J. Restricted two-stage multi-locus genome-wide association analysis and candidate gene prediction of boll opening rate in upland cotton. Scientia Agricultura Sinica, 2022, 55(2): 248-264. (in Chinese) | |
[24] |
ZHANG T Z, QIAN N, ZHU X F, CHEN H, WANG S, MEI H X, ZHANG Y M. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS ONE, 2013, 8: e57220.
doi: 10.1371/journal.pone.0057220 |
[25] | SU J J, FAN S L, LI L B, WEI H L, WANG C X, WANG H T, SONG M Z, ZHANG C, GU L J, ZHAO S Q, MAO G Z, WANG C S, PANG C Y, YU S X. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese Upland cotton. Frontier in Plant Science, 2016, 7: 1576. |
[26] | 王娟, 董承光, 刘丽, 孔宪辉, 王旭文, 余渝. 陆地棉主要产量相关性状的SSR标记关联分析. 植物遗传资源学报, 2017, 18(4): 720-727. |
WANG J, DONG C G, LIU L, KONG X H, WANG X W, YU Y. Association analysis of yield-related traits with SSR markers in Upland cotton (Gossypium hirsutum L.). Journal of Plant Genetic Resources, 2017, 18(4): 720-727. (in Chinese) | |
[27] |
FANG L, WANG Q, HU Y, JIA Y H, CHEN J D, LIU B L, ZHANG Z Y, GUAN X Y, CHEN S Q, ZHOU B L, MEI G F, SUN J L, PAN Z E, HE S P, XIAO S H, SHI W J, GONG W F, LIU J G, MA J, CAI C P, ZHU X F, GUO W Z, DU X M, ZHANG T Z. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49: 1089-1098.
doi: 10.1038/ng.3887 |
[28] |
DONG C G, WANG J, CHEN Q J, YU Y, LI B C. Detection of favorable alleles for yield and yield components by association mapping in upland cotton. Genes and Genomics, 2018, 40: 725-734.
doi: 10.1007/s13258-018-0678-0 |
[29] |
WANG X L, FENG W, WANG H R, WANG Q K, WEI Z, ZHANG G H, LIU X L, LI Z Y, SONG X L, SUN X Z. Multi-environments and multi-models association mapping identified candidate genes of lint percentage and seed index in Gossypium hirsutum L.. Molecular Breeding, 2019, 39: 149.
doi: 10.1007/s11032-019-1063-7 |
[30] |
SU J J, WANG C X, MA Q, ZHANG A, SHI C H, LIU J J, ZHANG X L, YANG D L, MA X F. An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton. BMC Plant Biology, 2020, 20(1): 416-416.
doi: 10.1186/s12870-020-02613-y |
[31] |
ZHU G Z, HOU S, SONG X H, WANG X, WANG W, CHEN Q J, GUO W Z. Genome-wide association analysis reveals quantitative trait loci and candidate genes involved in yield components under multiple field environments in cotton (Gossypium hirsutum). BMC Plant Biology, 2021, 21(1): 250-250.
doi: 10.1186/s12870-021-03009-2 |
[32] |
WANG P P, HE S P, SUN G F, PAN Z E, SUN J L, GENG X L, PENG Z, GONG W F, WANG L R, PANG B Y, JIA Y H, DU X M. Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum). Scientific Reports, 2021, 11: 15935.
doi: 10.1038/s41598-021-95629-9 |
[33] |
SUN Z W, WANG X F, LIU Z W, GU Q S, ZHANG Y, LI Z K, KE H F, YANG J, WU J H, WU L Q, ZHANG G Y, ZHANG C Y, MA Z Y. Genome-wide association study discovered genetic variation and candidate genes of fiber quality traits in Gossypium hirsutum L.. Plant Biotechnology Journal, 2017, 15: 982-996.
doi: 10.1111/pbi.12693 |
[34] |
GAPARE W, CONATY W, ZHU Q H, LIU S M, STILLER W, LLEWELLYN D, WILSON L. Genome-wide association study of yield components and fiber quality traits in a cotton germplasm diversity panel. Euphytica, 2017, 213(66): 1-22.
doi: 10.1007/s10681-016-1788-x |
[35] | DONG C G, WANG J, YU Y, LI B C, CHEN Q J. Association mapping and favorable QTL alleles for fiber quality traits in Upland cotton (Gossypium hirsutum L.). Journal of Genetics, 2018, 97(s1): 1-12. |
[36] | DONG C G, WANG J, YU Y, JU L Z, ZHOU X F, MA X M, MEI G F, HAN Z G, SI Z F, LI B C, CHEN H, ZHANG T Z. Identifying functional genes influencing Gossypium hirsutum fiber quality. Frontier in Plant Science, 2019, 9: 1968. |
[37] |
YUAN Y C, ZHANG H J, WANG L Y, XING H X, MAO L L, TAO J C, WANG X L, FENG W, WANG Q K, WANG H R, WEI Z, ZHANG G H, SONG X L, SUN X Z. Candidate quantitative trait loci and genes for fiber quality in Gossypium hirsutum L. detected using single-and multi-locus association mapping. Industrial Crops and Products, 2019, 134: 356-369.
doi: 10.1016/j.indcrop.2019.04.010 |
[38] |
SU J J, WANG C X, YANG D L, SHI C H, ZHANG A, MA Q, LIU J J, ZHANG X L, HUANG L, MA X F. Decryption of favorable haplotypes and potential candidate genes for five fiber quality properties using a relatively novel genome-wide association study procedure in upland cotton. Industrial Crops and Products, 2020, 158: 113004.
doi: 10.1016/j.indcrop.2020.113004 |
[39] | 张素君, 李兴河, 唐丽媛, 王海涛, 刘存敬, 蔡肖, 张香云, 张建宏. 陆地棉纤维品质性状关联分析及优异等位基因挖掘. 植物遗传资源学报, 2021, 22(1): 214-228. |
ZHANG S J, LI X H, TANG L Y, WANG H T, LIU C J, CAI X, ZHANG X Y, ZHANG J H. Exploration of elite alleles related with fiber quality traits in Gossypium hirsutum L. by association analysis. Journal of Plant Genetic Resources, 2021, 22(1): 214-228. (in Chinese) | |
[40] |
ULLOA M, SANTIAGO L M D, HULSE-KEMP A M, STELLY D M, BURKE J J. Enhancing upland cotton for drought resilience, productivity, and fiber quality: Comparative evaluation and genetic dissection. Molecular Genetics and Genomics, 2020, 295: 155-176.
doi: 10.1007/s00438-019-01611-6 |
[41] |
韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析. 作物学报, 2021, 47(3): 438-450.
doi: 10.3724/SP.J.1006.2021.04063 |
HAN B, WANG X W, LI B Q, YU Y, TIAN Q, YANG X Y. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.). Acta Agronomica Sinica, 2021, 47(3): 438-450. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04063 |
|
[42] | APPIAH M K, FEIKE T, WIREDU A, MAMITIMIN Y. Cotton production, land use change and resource competition in the Aksu-Tarim River Basin, Xinjiang, China. Quarterly Journal of International Agriculture, 2014, 53(3): 243-261. |
[43] | 田笑明, 李雪源, 吕新, 李保成, 陈冠文. 新疆棉作理论与现代植棉技术. 北京: 科学出版社, 2016. |
TIAN X M, LI X Y, LÜ X, LI B C, CHEN G W. Principles and Modern Technologies of Cotton Farming in Xinjiang. Beijing: Science Press, 2016. (in Chinese) | |
[44] | 白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50(1): 38-50. |
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017, 50(1): 38-50. (in Chinese) | |
[45] | 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. |
DU X M, ZHOU Z L. Descriptors and Data Standard for Cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005. (in Chinese) | |
[46] |
CAI C P, ZHU G Z, ZHANG T Z, GUO W Z. High-density 80K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18: 654.
doi: 10.1186/s12864-017-4062-2 |
[47] | 钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析[D]. 南京: 南京农业大学, 2009. |
QIAN N. Genetic diversity and association of gene (QTL) of breeding target traits of Upland cotton[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese) | |
[48] |
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z F. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
doi: 10.1038/nbt.3207 |
[49] |
SUN H, HU M L, LI J Y, CHEN L, LI M, ZHANG S Q, ZHANG X L, YANG X Y. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biology, 2018, 18: 150.
doi: 10.1186/s12870-018-1367-5 |
[50] |
ZHANG J, HUANG G Q, ZOU D, YAN J Q, LI Y, HU S, LI X B. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. The New Phytologist, 2018, 217(2): 625-640.
doi: 10.1111/nph.14864 |
[51] |
MISHRA N, SUN L, ZHU X L, SMITH J, SRIVASTAVA A P, YANG X J, PEHLIVAN N P, ESMAEILI N, LUO H, SHEN G X, JONES D, AULD D, BURKE J, PAYTON P, ZHANG H. Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant and Cell Physiology, 2017, 58(4): 735-746.
doi: 10.1093/pcp/pcx032 |
[1] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[2] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[5] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[6] | 李恒,字向东,王会,熊燕,吕明杰,刘宇,蒋旭东. 基于全基因组重测序的山羊产羔数性状关键调控基因的筛选[J]. 中国农业科学, 2022, 55(23): 4753-4768. |
[7] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
[8] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[9] | 常立国,何坤辉,刘建超. 多环境下玉米保绿相关性状遗传位点的挖掘[J]. 中国农业科学, 2022, 55(16): 3071-3081. |
[10] | 李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(13): 2485-2499. |
[11] | 刘瑞达, 葛常伟, 王敏轩, 申延会, 李朋珍, 崔子倩, 刘瑞华, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 张桂寅, 庞朝友. 陆地棉转录因子基因GhMYB108的克隆及其在抗旱中的作用[J]. 中国农业科学, 2022, 55(10): 1877-1890. |
[12] | 崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(1): 219-232. |
[13] | 袁景丽,郑红丽,梁先利,梅俊,余东亮,孙玉强,柯丽萍. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1846-1855. |
[14] | 秦鸿德, 冯常辉, 张友昌, 别墅, 张教海, 夏松波, 王孝刚, 王琼珊, 蓝家样, 陈全求, 焦春海. 基于部分NCII设计的陆地棉F1表现预测[J]. 中国农业科学, 2021, 54(8): 1590-1598. |
[15] | 张鹏飞,史良玉,刘家鑫,李洋,吴成斌,王立贤,赵福平. 畜禽全基因组长纯合片段检测的研究进展[J]. 中国农业科学, 2021, 54(24): 5316-5326. |
|