中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 219-232.doi: 10.3864/j.issn.0578-1752.2022.01.018
• 研究简报 • 上一篇
崔承齐1(),刘艳阳1(),江晓林1,孙知雨2,杜振伟1,武轲1,梅鸿献1(),郑永战1()
收稿日期:
2021-06-23
接受日期:
2021-09-18
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
梅鸿献,郑永战
作者简介:
崔承齐,E-mail: 基金资助:
CUI ChengQi1(),LIU YanYang1(),JIANG XiaoLin1,SUN ZhiYu2,DU ZhenWei1,WU Ke1,MEI HongXian1(),ZHENG YongZhan1()
Received:
2021-06-23
Accepted:
2021-09-18
Online:
2022-01-01
Published:
2022-01-07
Contact:
HongXian MEI,YongZhan ZHENG
摘要:
【目的】通过对芝麻产量相关性状的全基因组关联分析,挖掘与产量性状关联的SNP位点及预测候选基因,为通过分子标记辅助选择育种等方式提高芝麻产量提供技术基础。【方法】以363份不同遗传背景和地理来源的芝麻种质资源构成的自然群体为研究对象,调查2年2点4环境下8个产量相关性状(单株产量、单株蒴数、蒴粒数、千粒重、株高、主茎果轴长、始蒴高度和表观收获指数)的表型值,借助覆盖全基因组的42 781个SNP标记,利用多位点SNP随机效应混合线性模型(multi-locus random-SNP-effect mixed linear model,mrMLM)对8个产量相关性状进行全基因组关联分析,检测与产量相关性状显著关联的SNP位点,并预测候选基因。【结果】在4个不同环境下,8个产量相关性状表现出广泛的表型变异,变异系数为6.51%—33.57%;相关性分析表明单株产量与单株蒴数、株高、主茎果轴长、表观收获指数呈极显著正相关;方差分析表明产量相关性状的基因型效应、环境效应、基因型与环境互作效应均达到了极显著水平。通过多位点全基因组关联分析共检测到210个与产量相关性状显著关联的SNP,在2018年南阳环境下检测到47个SNP,解释表型变异的1.63%—17.29%;在2019年南阳环境下检测到35个SNP,解释表型变异的1.94%—11.90%;在2018年平舆环境下检测到35个SNP,解释表型变异的2.15%—15.90%;在2019年平舆环境下检测到53个SNP,解释表型变异的1.25%—11.13%;在4个环境的综合BLUP条件下检测到75个SNP,解释表型变异的1.44%—13.58%。上述210个SNP涉及到175个位点,其中10个位点在3个及以上环境中被重复检测到。在这10个位点基因组区域内,共鉴定到214个候选基因,其中156个候选基因具有功能注释,主要涉及植物代谢、生物调控、生长发育等生物学过程。根据功能注释筛选出4个可能与芝麻产量相关的候选基因,其中SIN_1006338编码1-氨基环丙烷-1-羧酸合酶3(1-aminocyclopropane-1-carboxylate synthase 3-like),参与乙烯的生物合成;SIN_1024330编码碱性螺旋-环-螺旋(basic helix-loop-helix)转录因子,负向调控植物细胞和器官的伸长;SIN_1014512编码吲哚-3-乙酸-酰胺合成酶GH3.6(indole-3-acetic acid-amido synthetase GH3.6),参与调控茎和下胚轴细胞的伸长生长;SIN_1011473编码泛素受体蛋白DA1(protein DA1-like),参与调节植物细胞增殖周期。【结论】通过多位点SNP随机效应混合线性模型的全基因组关联分析,检测到175个与产量相关性状显著关联的位点,筛选出4个可能与产量相关的重要候选基因。
崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(1): 219-232.
CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.)[J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
表1
芝麻8个产量相关性状的描述统计分析"
环境 Environment | 性状 Traits | 变异范围 Range | 均值 Mean | 标准差 SD | 变异系数 CV (%) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|---|
2018年平舆 2018PY | 单株产量SY | 3.00–17.36 | 8.30 | 2.52 | 30.33 | 0.50 | 0.04 |
单株蒴数CN | 31.65–108.05 | 62.27 | 14.69 | 23.60 | 0.52 | 0.13 | |
蒴粒数SN | 36.07–112.98 | 64.64 | 8.53 | 13.20 | 0.74 | 3.46 | |
千粒重SW | 2.04–3.77 | 3.00 | 0.32 | 10.49 | -0.30 | -0.15 | |
株高PH | 100.00–183.50 | 138.41 | 13.16 | 9.51 | -0.01 | 0.01 | |
主茎果轴长CAL | 32.15–94.50 | 60.50 | 11.49 | 18.99 | 0.06 | -0.23 | |
始蒴高度FCH | 49.50–102.50 | 72.82 | 9.72 | 13.35 | 0.21 | 0.22 | |
表观收获指数HI | 0.18–0.44 | 0.31 | 0.05 | 16.13. | -0.16 | -0.25 | |
2018年南阳 2018NY | 单株产量SY | 2.50–17.80 | 7.63 | 2.17 | 28.46 | 0.54 | 1.03 |
单株蒴数CN | 56.00–166.20 | 103.16 | 20.56 | 19.93 | 0.28 | -0.07 | |
蒴粒数SN | 43.71–106.07 | 64.31 | 8.36 | 12.99 | 0.85 | 2.74 | |
千粒重SW | 2.29–3.86 | 3.07 | 0.31 | 10.02 | 0.18 | -0.38 | |
株高PH | 137.60–240.00 | 183.19 | 15.96 | 8.71 | -0.10 | 0.40 | |
主茎果轴长 CAL | 74.80–151.00 | 113.57 | 12.44 | 10.96 | -0.08 | 0.11 | |
始蒴高度FCH | 36.50–102.80 | 60.98 | 10.16 | 16.66 | 0.36 | 1.26 | |
表观收获指数HI | 0.10–0.42 | 0.21 | 0.04 | 19.05 | 0.71 | 3.73 | |
2019年平舆 2019PY | 单株产量SY | 3.01–20.09 | 9.12 | 3.06 | 33.57 | 0.59 | 0.63 |
单株蒴数CN | 21.20–152.90 | 82.29 | 21.87 | 26.58 | 0.28 | 0.18 | |
蒴粒数SN | 30.68–102.49 | 64.71 | 9.86 | 15.24 | 0.91 | 2.83 | |
千粒重SW | 1.63–3.93 | 2.98 | 0.41 | 13.78 | -0.33 | -0.20 | |
株高PH | 80.60–200.60 | 141.81 | 17.36 | 12.24 | 0.09 | 1.01 | |
主茎果轴长 CAL | 22.00–123.70 | 78.10 | 15.05 | 19.27 | -0.06 | 0.46 | |
始蒴高度FCH | 22.40–146.50 | 60.57 | 14.55 | 24.03 | 0.55 | 2.78 | |
表观收获指数HI | 0.08–0.39 | 0.22 | 0.05 | 22.73 | -0.31 | 0.45 | |
2019年南阳 2019NY | 单株产量SY | 4.88–17.54 | 11.17 | 2.41 | 21.56 | 0.05 | -0.48 |
单株蒴数CN | 35.95–124.20 | 75.59 | 15.29 | 20.22 | 0.22 | 0.03 | |
蒴粒数SN | 52.83–120.25 | 69.18 | 9.41 | 13.60 | 1.74 | 4.69 | |
千粒重SW | 2.25–4.20 | 3.08 | 0.35 | 11.20 | 0.09 | -0.49 | |
株高PH | 113.65–207.65 | 150.65 | 16.17 | 10.73 | 0.37 | 0.14 | |
主茎果轴长CAL | 55.93–116.40 | 84.61 | 12.49 | 14.76 | 0.19 | -0.47 | |
始蒴高度FCH | 29.65–99.60 | 59.18 | 10.89 | 18.40 | 0.57 | 0.67 | |
表观收获指数HI | 0.11–0.35 | 0.23 | 0.05 | 21.74 | -0.10 | -0.62 | |
综合 BLUP | 单株蒴数CN | 53.05–89.01 | 71.69 | 7.03 | 9.79 | 0 | -0.31 |
蒴粒数 SN | 54.96–91.76 | 66.26 | 5.86 | 8.85 | 1.46 | 3.02 | |
千粒重 SW | 2.48–3.60 | 3.06 | 0.20 | 6.51 | -0.14 | -0.39 | |
单株产量SY | 6.82–11.05 | 8.55 | 0.77 | 9.01 | 0.53 | 0.21 | |
株高PH | 121.4–169.0 | 145.7 | 9.70 | 6.66 | 0.04 | -0.46 | |
主茎果轴长CAL | 50.95–85.69 | 69.33 | 7.61 | 10.98 | -0.15 | -0.75 | |
始蒴高度FCH | 47.10–90.10 | 64.78 | 7.55 | 11.65 | 0.34 | 0.14 | |
表观收获指数 HI | 0.17–0.27 | 0.22 | 0.02 | 9.10 | -0.11 | -0.35 |
表2
关联群体产量性状的相关性分析"
环境 Environment | 性状 Trait | 单株产量 SY | 单株蒴数 CN | 蒴粒数 SN | 千粒重 SW | 株高 PH | 主茎果轴长 CAL | 始蒴高度 FCH |
---|---|---|---|---|---|---|---|---|
2018年平舆 2018PY | 单株蒴数 CN | 0.53** | ||||||
蒴粒数 SN | 0.10 | -0.12* | ||||||
千粒重 SW | 0.10 | 0.03 | -0.15** | |||||
株高 PH | 0.35** | 0.31** | 0.03 | 0.16** | ||||
主茎果轴长 CAL | 0.46** | 0.40** | 0.04 | 0.18** | 0.74** | |||
始蒴高度 FCH | 0.01 | -0.02 | 0.02 | 0.08 | 0.62** | -0.25** | ||
表观收获指数 HI | 0.60** | 0.28** | 0.08 | -0.21** | -0.02 | 0.17** | -0.23** | |
2018年南阳 2018NY | 单株蒴数 CN | 0.80** | ||||||
蒴粒数 SN | 0.17** | 0.01 | ||||||
千粒重 SW | 0.08 | -0.04 | -0.36** | |||||
株高 PH | 0.45** | 0.348** | 0.08 | 0.14** | ||||
主茎果轴长 CAL | 0.40** | 0.32** | -0.09 | 0.20** | 0.76** | |||
始蒴高度 FCH | 0.126* | 0.10 | 0.258** | -0.05 | 0.43** | -0.25** | ||
表观收获指数 HI | 0.55** | 0.29** | 0.15** | -0.06 | 0.05 | 0.14** | -0.12* | |
2019年平舆 2019PY | 单株蒴数 CN | 0.56** | ||||||
蒴粒数 SN | 0.01 | -0.13* | ||||||
千粒重 SW | 0.28** | 0.00 | -0.26** | |||||
株高 PH | 0.44** | 0.32** | 0.07 | 0.18** | ||||
主茎果轴长 CAL | 0.43** | 0.29** | -0.07 | 0.36** | 0.58** | |||
始蒴高度 FCH | 0.07 | 0.07 | 0.157** | -0.140** | 0.551** | -0.36** | ||
表观收获指数 HI | 0.63** | 0.21** | -0.03 | 0.22** | 0.10 | 0.63** | -0.18** | |
2019年南阳 2019NY | 单株蒴数 CN | 0.56** | ||||||
蒴粒数 SN | 0.03 | -0.22** | ||||||
千粒重 SW | 0.01 | -0.08 | -0.18** | |||||
株高 PH | 0.32** | 0.45** | 0.09 | 0.26** | ||||
主茎果轴长 CAL | 0.44** | 0.52** | -0.08 | 0.18** | 0.77** | |||
始蒴高度 FCH | -0.09 | -0.04 | 0.236** | 0.25** | 0.50** | -0.15** | ||
表观收获指数 HI | 0.30** | 0.28** | -0.12* | -0.13* | 0.06 | 0.32** | -0.34** | |
综合BLUP | 单株蒴数 CN | 0.68** | ||||||
蒴粒数 SN | -0.03 | -0.26 ** | ||||||
千粒重 SW | 0.12* | -0.15** | -0.30** | |||||
株高 PH | 0.38** | 0.27** | 0.09 | 0.21** | ||||
主茎果轴长 CAL | 0.51** | 0.35** | -0.08 | 0.25** | 0.65** | |||
始蒴高度 FCH | -0.02 | -0.02 | 0.23** | 0.03 | 0.59** | -0.21** | ||
表观收获指数 HI | 0.57** | 0.39** | -0.03 | -0.10 | -0.04 | 0.35** | -0.40** |
表3
4个环境产量相关性状的方差分析"
性状Trait | 变异来源Source | 离均差平方和 Type sum of squares | 自由度 Df | 均方 Mean square | F值F value |
---|---|---|---|---|---|
单株产量 SY | 基因型G | 7277.22 | 362 | 20.10 | 3.00** |
环境E | 12743.45 | 3 | 4247.82 | 633.22** | |
基因型×环境 G×E | 12598.92 | 1086 | 11.60 | 1.73** | |
误差 Error | 9740.36 | 1452 | 6.71 | ||
总变异Total | 250355.40 | 2904 | |||
单株蒴数 CN | 基因型G | 362349.02 | 362 | 1000.96 | 4.05** |
环境E | 353079.52 | 3 | 117693.17 | 476.59** | |
基因型×环境 G×E | 422589.91 | 1086 | 389.13 | 1.58** | |
误差Error | 358570.49 | 1452 | 246.95 | ||
总变异Total | 15197261.65 | 2904 | |||
蒴粒数 SN | 基因型G | 154208.88 | 362 | 425.99 | 6.27** |
环境E | 8841.06 | 3 | 2947.02 | 43.36** | |
基因型×环境 G×E | 130872.51 | 1086 | 120.51 | 1.77** | |
误差Error | 98692.38 | 1452 | 67.97 | ||
总变异Total | 13566244.22 | 2904 | |||
千粒重 SW | 基因型G | 207.75 | 362 | 0.57 | 9.27** |
环境E | 25.70 | 3 | 8.57 | 138.44** | |
基因型×环境G×E | 114.06 | 1086 | 0.11 | 1.70** | |
误差Error | 89.84 | 1452 | 0.06 | ||
总变异Total | 28640.90 | 2904 | |||
株高 PH | 基因型G | 380243.82 | 362 | 1050.40 | 8.44** |
环境E | 520433.78 | 3 | 173477.93 | 1393.93** | |
基因型×环境 G×E | 239288.84 | 1086 | 220.34 | 1.77** | |
误差Error | 180705.09 | 1452 | 124.45 | ||
总变异Total | 60234518.86 | 2904 | |||
主茎果轴长 CAL | 基因型G | 249490.48 | 362 | 689.20 | 5.94** |
环境E | 223064.77 | 3 | 74354.92 | 640.81** | |
基因型×环境 G×E | 205442.35 | 1086 | 189.17 | 1.63** | |
误差Error | 168479.54 | 1452 | 116.03 | ||
总变异Total | 16679958.27 | 2904 | |||
始蒴高度 FCH | 基因型 G | 239089.39 | 362 | 660.47 | 9.20** |
环境E | 163719.63 | 3 | 54573.21 | 759.93** | |
基因型×环境G×E | 122236.79 | 1086 | 112.56 | 1.57** | |
误差Error | 104273.55 | 1452 | 71.81 | ||
总变异Total | 12056126.18 | 2904 | |||
表观收获指数 HI | 基因型G | 30750.48 | 362 | 84.95 | 3.42** |
环境E | 125145.68 | 3 | 41715.23 | 1679.68** | |
基因型×环境 G×E | 44030.95 | 1086 | 40.54 | 1.63** | |
误差Error | 36035.85 | 1451 | 24.84 | ||
总变异Total | 1743682.01 | 2903 |
表4
在3种以上环境同时检测到的10个显著关联位点"
位点 Loci | 连锁群 LG | 环境 Environments | 性状 Traits | 标记 SNP | 物理位置 Position (bp) | LOD值 LOD | 贡献率 R2 (%) |
---|---|---|---|---|---|---|---|
1 | 4 | 2018年南阳2018NY | 单株蒴数 CN | S4_12077666 | 12077666 | 4.88 | 4.52 |
1 | 4 | 2018年平舆2018PY | 单株蒴数 CN | S4_12175895 | 12175895 | 4.74 | 5.34 |
1 | 4 | 2019年平舆2019PY | 单株蒴数 CN | S4_12175895 | 12175895 | 7.23 | 5.75 |
1 | 4 | 综合 BLUP | 单株蒴数 CN | S4_12175895 | 12175895 | 8.84 | 7.38 |
2 | 4 | 2018年南阳2018NY | 蒴粒数 SN | S4_12175895 | 12175895 | 7.45 | 4.65 |
2 | 4 | 2018年平舆2018PY | 蒴粒数 SN | S4_12175895 | 12175895 | 14.19 | 12.89 |
2 | 4 | 2019年南阳2019NY | 蒴粒数 SN | S4_12175895 | 12175895 | 8.97 | 6.60 |
2 | 4 | 2019年平舆2019PY | 蒴粒数 SN | S4_12175895 | 12175895 | 8.41 | 8.16 |
2 | 4 | 综合 BLUP | 蒴粒数 SN | S4_12175895 | 12175895 | 11.97 | 7.34 |
3 | 6 | 2018年平舆2018PY | 千粒重 SW | S6_20401909 | 20401909 | 3.91 | 3.88 |
3 | 6 | 2019年南阳2019NY | 千粒重 SW | S6_20401885 | 20401885 | 3.14 | 2.60 |
3 | 6 | 2019年平舆2019PY | 千粒重 SW | S6_20401885 | 20401885 | 4.05 | 3.31 |
3 | 6 | 综合 BLUP | 千粒重 SW | S6_20401885 | 20401885 | 3.21 | 2.39 |
4 | 4 | 2018年平舆2018PY | 株高 PH | S4_2965202 | 2965202 | 11.61 | 9.70 |
4 | 4 | 2019南阳2019NY | 株高 PH | S4_2999295 | 2999295 | 5.60 | 7.45 |
4 | 4 | 2019年平舆2019PY | 株高 PH | S4_2965202 | 2965202 | 3.13 | 2.87 |
5 | 6 | 2018年南阳2018NY | 株高 PH | S6_3944096 | 3944096 | 3.29 | 10.37 |
5 | 6 | 2018年平舆2018PY | 株高 PH | S6_3944096 | 3944096 | 4.66 | 4.21 |
5 | 6 | 综合 BLUP | 株高 PH | S6_3944096 | 3944096 | 3.41 | 4.22 |
6 | 1 | 2018年南阳2018NY | 始蒴高度 FCH | S1_5656292 | 5656292 | 6.11 | 5.46 |
6 | 1 | 2019年平舆2019PY | 始蒴高度 FCH | S1_5656292 | 5656292 | 8.20 | 6.52 |
6 | 1 | 综合 BLUP | 始蒴高度 FCH | S1_5656292 | 5656292 | 5.78 | 6.25 |
7 | 4 | 2018年南阳2018NY | 始蒴高度 FCH | S4_12175895 | 12175895 | 6.54 | 4.12 |
7 | 4 | 2018年平舆2018PY | 始蒴高度 FCH | S4_12175895 | 12175895 | 3.23 | 2.15 |
7 | 4 | 2019年南阳2019NY | 始蒴高度 FCH | S4_12175895 | 12175895 | 9.00 | 4.91 |
7 | 4 | 2019年平舆2019PY | 始蒴高度 FCH | S4_12175895 | 12175895 | 3.10 | 2.03 |
7 | 4 | 综合 BLUP | 始蒴高度 FCH | S4_12175895 | 12175895 | 10.01 | 6.95 |
8 | 10 | 2018年南阳2018NY | 始蒴高度 FCH | S10_3435751 | 3435751 | 6.30 | 17.29 |
8 | 10 | 2019年平舆2019PY | 始蒴高度 FCH | S10_3389829 | 3389829 | 3.38 | 2.17 |
8 | 10 | 2019年南阳2019NY | 始蒴高度 FCH | S10_3441972 | 3441972 | 3.28 | 6.68 |
9 | 12 | 2018年南阳2018NY | 始蒴高度 FCH | S12_7500712 | 7500712 | 7.67 | 8.91 |
9 | 12 | 2019年南阳2019NY | 始蒴高度 FCH | S12_7510215 | 7510215 | 6.97 | 2.68 |
9 | 12 | 综合 BLUP | 始蒴高度 FCH | S12_7500712 | 7500712 | 3.36 | 3.48 |
10 | 5 | 2018年南阳2018NY | 表观收获指数 HI | S5_1942861 | 1942861 | 3.13 | 3.87 |
10 | 5 | 2019年平舆2019PY | 表观收获指数 HI | S5_1861592 | 1861592 | 3.21 | 8.11 |
10 | 5 | 综合 BLUP | 表观收获指数 HI | S5_1942861 | 1942861 | 4.25 | 2.14 |
[1] | ANILAKUMAR K R, PAL A, KHANUM F, BAWA A S. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds: An overview. Agriculturae Conspectus Scientificus, 2010, 75(4): 159-168. |
[2] |
DOSSA K, WEI X, NIANG M, LIU P, ZHANG Y, WANG L, LIAO B, CISSE N, ZHANG X, DIOUF D. Near-infrared reflectance spectroscopy reveals wide variation in major components of sesame seeds from Africa and Asia. The Crop Journal, 2018, 6: 202-206.
doi: 10.1016/j.cj.2017.10.003 |
[3] |
WU K, LIU H, YANG M, TAO Y, MA H, WU W, ZUO Y, ZHAO Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq technology. BMC Plant Biology, 2014, 14: 274.
doi: 10.1186/s12870-014-0274-7 |
[4] |
BIABANI A R, PAKNIYAT H. Evaluation of seed yield-related characters in sesame (Sesamum indicum L.) using factor and path analysis. Pakistan Journal of Biological Sciences, 2008, 11(8): 1157-1160.
doi: 10.3923/pjbs.2008.1157.1160 |
[5] |
WANG L, XIA Q, ZHANG Y, ZHU X, ZHU X, LI D, NI X, GAO Y, XIANG H, WEI X, YU J, QUAN Z, ZHANG X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 2016, 17(1): 31.
doi: 10.1186/s12864-015-2316-4 |
[6] |
MORRELL P L, BUCKLER E S, ROSS-IBARRA J. Crop genomics: Advances and applications. Nature Reviews Genetics, 2012, 13(2): 85-96.
doi: 10.1038/nrg3097 |
[7] |
MACKAY I, POWELL W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12(2): 57-63.
doi: 10.1016/j.tplants.2006.12.001 |
[8] |
MACKAY T F C, STONE E A, AYROLES J F. The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 2009, 10(8): 565-577.
doi: 10.1038/nrg2612 |
[9] |
FLINT-GARCIA S A, THUILET A C, YU J, PRESSOIR G, ROMERO S M, MITCHELL S E, DOEBLEY J, KRESOVICH S, GOODMAN M M, BUCKLER E S. Maize association population: A high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44(6): 1054-1064.
doi: 10.1111/tpj.2005.44.issue-6 |
[10] |
YU J, BUCKLER E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.
doi: 10.1016/j.copbio.2006.02.003 |
[11] |
LI H, PENG Z, YANG X, WANG W, FU J, WWANG J, HAN Y, CHAI Y, GUO T, YANG N, LIU J, WARBURTON ML, CHENG Y, HAO X, ZHANG P, ZHAO J, LIU Y, WANG G, LI J, YAN J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
doi: 10.1038/ng.2484 |
[12] |
HUANG X, ZHAO Y, WEI X, LI C, WWANG A, ZHAO Q, LI W, GUO Y, DENG L, ZHU C, FAN D, LU Y, WENG Q, LIU K, ZHOU T, JING Y, SI L, DONGG, HUANG T, LU T, FENG Q, QIAN Q, LI J, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2011, 44(1): 32-39.
doi: 10.1038/ng.1018 |
[13] |
LIU Y, LIN Y, GAO S, LI Z, MA J, DENG M, CHEN G, WEI Y, ZHENG Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal, 2017, 91(5): 861-873.
doi: 10.1111/tpj.2017.91.issue-5 |
[14] |
FANG L, WANG Q, HU Y, JIA Y, CHEN J, LIU B, ZHANG Z, GUAN X, CHEN S, ZHOU B, MEI G, SUN J, PAN Z, HE S, XIAO S, SHI W, GONGW, LIU J, MA J, CAI C, ZHU X, GUO W, DU X, ZHANG T. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49(7): 1089-1098.
doi: 10.1038/ng.3887 |
[15] |
ZHOU Z, JIANG Y, WANG Z, GOU Z, LYU J, LI W, YU Y, SHU L, ZHAO Y, MA Y, FANG C, SHEN Y, LIU T, LI C, LI Q, WU M, WANG M, WU Y, DONG Y, WAN W, WANG X, DING Z, GAO Y, XIANG H, ZHU B, LEE S H, WANG W, TIAN Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.
doi: 10.1038/nbt.3096 |
[16] | XU L, HU K, ZHANG Z, GUAN C, CHEN S, HUA W, LI J, WEN J, YI B, SHEN J, MA C, TU J, FU T. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research, 2016, 23(1): 43-52. |
[17] |
WEI X, LIU K, ZHANG Y, FENG Q, WANG L, ZHAO Y, LI D, ZHAO Q, ZHU X, ZHU X, LI W, FAN D, GAO Y, LU Y, ZHANG X, TANG X, ZHOU C, ZHU C, LIU L, ZHONG R, TIAN Q, WEN Z, WENG Q, HAN B, HUANG X, ZHANG X. Genetic discovery for oil production and quality in sesame. Nature Communications, 2015, 6: 8609.
doi: 10.1038/ncomms9609 |
[18] |
ZHANG Y M, JIA Z, DUNWELL J M. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science, 2019, 10: 100.
doi: 10.3389/fpls.2019.00100 |
[19] |
WANG S B, FENG J Y, REN W L, HUANG B, ZHOU L, WEN Y J, ZHANG J, DUNWELL J M, XU S, ZHANG Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6: 19444.
doi: 10.1038/srep19444 |
[20] |
CUI Y, ZHANG F, ZHOU Y. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science, 2018, 9: 1464.
doi: 10.3389/fpls.2018.01464 |
[21] |
ZHANG Y W, LWAKA TAMBA C, WEN Y J, LI P, REN W L, NI Y L, GAO J, ZHANG Y M. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. Genomics Proteomics Bioinformatics, 2020, 18(4): 481-487.
doi: 10.1016/j.gpb.2020.06.006 |
[22] |
SUN X, LIU D, ZHANG X, LI W, LIU H, HONG W, JIANG C, GUAN N, MA C, ZENG H, XU C, SONG J, HUANG L, WANG C, SHI J, WANG R, ZHENG X, LU C, WANG X, ZHENG H. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700 |
[23] |
CUI C, MEI H, LIU Y, ZHANG H, ZHENG Y. Genetic diversity, population structure, and linkage disequilibrium of an association- mapping panel revealed by genome-wide SNP markers in sesame. Frontiers in Plant Science, 2017, 8: 1189.
doi: 10.3389/fpls.2017.01189 |
[24] | 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊. 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017, 50(13): 2433-2441. |
LIU Y Y, MEI H X, DU Z W, WU K, ZHENG Y Z, CUI X H, ZHENG L. Construction of core collection of sesame based on phenotype and molecular markers. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441. (in Chinese) | |
[25] | MCKENNA S, MEYER M, GREGG C, GERBER S. CorrPlot: An Interactive scatterplot for exploring correlation. Journal of Computational & Graphical Statistics, 2015, 25(2): 445-463. |
[26] | BATES D, MÄCHLER M, BOLKER B, WALKER S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 2015, 67: 1-48. |
[27] | KALER A S, RAY J D, SCHAPAUGH W T, KING C A, PURCELL L C. Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theoretical & Applied Genetics, 2017, 130: 2203-2217. |
[28] |
LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26: 589-595.
doi: 10.1093/bioinformatics/btp698 |
[29] |
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULERl D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis toolkit: A map reduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110 |
[30] |
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R. 1000 GENOMES PROJECT ANALYSIS GROUP. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330 |
[31] |
YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.
doi: 10.1016/j.ajhg.2010.11.011 |
[32] |
BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 |
[33] | HUERTA-CEPAS J, FORSLUND K, COELHO L P, SZKLARCZYK D, JENSEN L J, VON MERING C, BORK P. eggNOG-mapper: Fast genome-wide functional annotation through orthology assignment. Molecular Biology & Evolution, 2017, 34(8): 2115-2122. |
[34] |
MEI H, LIU Y, CUI C, HU C, XIE F, ZHENG L, DU Z, WU K, JIANG X, ZHENG Y, MA Q. QTL mapping of yield-related traits in sesame. Molecular Breeding, 2021, 41: 43.
doi: 10.1007/s11032-021-01236-x |
[35] |
ZHOU R, DOSSA K, LI D, YU J, YOU J, WEI X, ZHANG X R. Genome-wide association studies of 39 seed yield-related traits in sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 2018, 19(9): 1-18.
doi: 10.3390/ijms19010001 |
[36] | TSUCHISAKA A, THEOLOGIS A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 2275-2280. |
[37] | PLETT J M, WILLIAMS M, LECLAIR G, REGAN S, BEARDMORE T. Heterologous over-expression of ACC SYNTHASE8 (ACS8) in Populus tremula × P. alba clone 717-1B4 results in elevated levels of ethylene and induces stem dwarfism and reduced leaf size through separate genetic pathways. Frontiers in Plant Science, 2014, 5: 514. |
[38] | ZHIPONOVA M K, MOROHASHI K, VANHOUTTE I, MACHEMER- NOONAN K, REVALSKA M, VAN MONTAGU M, GROTEWOLD E, RUSSINOVA E. Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop. Proceedings of the National Academy of Sciences of the United States of America, 2014, 18, 111(7): 2824-2829. |
[39] |
STASWICK P E, SERBAN B, ROWE M, TIRYAKI I, MALDONADO M T, MALDONADO M C, SUZA W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3- acetic acid. The Plant Cell, 2005, 17(2): 616-627.
doi: 10.1105/tpc.104.026690 |
[40] | NAKAZAWA M, YABE N, ICHIKAWA T, YAMAMOTO YY, YOSHIZUMI T, HASUNUMA K, MATSUI M. DFL1, an auxin- responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. The Plant Journal, 2001, 25(2): 213-221. |
[41] |
LI Y, ZHENG L, CORKE F, SMITH C, BEVAN M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes & Development, 2008, 22(10): 1331-1336.
doi: 10.1101/gad.463608 |
[42] |
XIA T, LI N, DUMENIL J, LI J, KAMENSKI A, BEVAN M W, GAO F, LI Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant Cell, 2013, 25(9): 3347-3359.
doi: 10.1105/tpc.113.115063 |
[43] |
VANHAEREN H, NAM Y J, DE MILDE L, CHAE E, STORME V, WEIGEL D, GONZALEZ N, INZÉ D. Forever Young: The role of ubiquitin receptor DA1 and E3 ligase BIG BROTHER in controlling leaf growth and development. Plant Physiology, 2017, 173(2): 1269-1282.
doi: 10.1104/pp.16.01410 |
[44] |
WANG J L, TANG M Q, CHEN S, ZHENG X F, MO H X, LI S J, WANG Z, ZHU K M, DING L N, LIU S Y, LI Y H, TAN X L. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnology Journal, 2017, 15(8): 1024-1033.
doi: 10.1111/pbi.2017.15.issue-8 |
[45] |
LIU H, LI H, HAO C, WANG K, WANG Y, QIN L, AN D, LI T, ZHANG X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2020, 18(5): 1330-1342.
doi: 10.1111/pbi.v18.5 |
[1] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[2] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[3] | 李恒,字向东,王会,熊燕,吕明杰,刘宇,蒋旭东. 基于全基因组重测序的山羊产羔数性状关键调控基因的筛选[J]. 中国农业科学, 2022, 55(23): 4753-4768. |
[4] | 琚铭, 苗红梅, 黄盈盈, 马琴, 王慧丽, 王翠英, 段迎辉, 韩秀花, 张海洋. 芝麻种间杂交亲和性差异及杂种生物学特征分析[J]. 中国农业科学, 2022, 55(20): 3897-3909. |
[5] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[6] | 李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(13): 2485-2499. |
[7] | 王娟, 马晓梅, 周小凤, 王新, 田琴, 李成奇, 董承光. 棉花产量构成因素性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(12): 2265-2277. |
[8] | 钟艳平,师立松,周瑢,高媛,何延庆,方圣,张秀荣,王林海,吴自明,张艳欣. 芝麻素高效提取检测技术的建立与高芝麻素种质的筛选[J]. 中国农业科学, 2022, 55(11): 2109-2120. |
[9] | 张鹏飞,史良玉,刘家鑫,李洋,吴成斌,王立贤,赵福平. 畜禽全基因组长纯合片段检测的研究进展[J]. 中国农业科学, 2021, 54(24): 5316-5326. |
[10] | 严勇亮,时晓磊,张金波,耿洪伟,肖菁,路子峰,倪中福,丛花. 春小麦籽粒主要品质性状的全基因组关联分析[J]. 中国农业科学, 2021, 54(19): 4033-4047. |
[11] | 宋春晖,陈晓菲,王枚阁,郑先波,宋尚伟,焦健,王苗苗,马锋旺,白团辉. 基于SLAF-seq技术鉴定苹果砧木耐涝候选基因[J]. 中国农业科学, 2021, 54(18): 3932-3944. |
[12] | 王继庆,任毅,时晓磊,王丽丽,张新忠,苏力坛·姑扎丽阿依,谢磊,耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析[J]. 中国农业科学, 2021, 54(11): 2249-2260. |
[13] | 郝晓帅,傅蒙蒙,刘再东,贺建波,王燕平,任海祥,王德亮,杨兴勇,程延喜,杜维广,盖钧镒. 东北大豆种质群体百粒重QTL-等位变异的全基因组解析[J]. 中国农业科学, 2020, 53(9): 1717-1729. |
[14] | 潘丽媛,贺建波,赵晋铭,王吴彬,邢光南,喻德跃,张小燕,李春燕,陈受宜,盖钧镒. RTM-GWAS方法应用于大豆RIL群体百粒重QTL检测的功效[J]. 中国农业科学, 2020, 53(9): 1730-1742. |
[15] | 李曙光,曹永策,贺建波,王吴彬,邢光南,杨加银,赵团结,盖钧镒. 大豆巢式关联作图群体蛋白质含量的遗传解析[J]. 中国农业科学, 2020, 53(9): 1743-1755. |
|