中国农业科学 ›› 2019, Vol. 52 ›› Issue (13): 2230-2242.doi: 10.3864/j.issn.0578-1752.2019.13.004
收稿日期:
2019-01-29
接受日期:
2019-04-08
出版日期:
2019-07-01
发布日期:
2019-07-11
通讯作者:
张前兵,马春晖
作者简介:
孙艳梅,E-mail:157372541@qq.com
基金资助:
SUN YanMei,ZHANG QianBing(),MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui()
Received:
2019-01-29
Accepted:
2019-04-08
Online:
2019-07-01
Published:
2019-07-11
Contact:
QianBing ZHANG,ChunHui MA
摘要:
【目的】解磷细菌(PSB)和丛枝菌根真菌(AMF)在促进作物养分吸收、提高作物产量等方面具有重要意义。探讨PSB和AMF对苜蓿生长及地下生物量的影响,明确PSB与AMF的相互作用对紫花苜蓿生长的机制,以期为紫花苜蓿人工栽培及其高效复合型微生物肥料的研制提供理论依据。【方法】试验采用单因素随机区组设计,选用4株菌,分别为具有高效解磷能力的巨大芽孢杆菌(Bm)和枯草芽孢杆菌(Bs),以及能与苜蓿根系共生的摩西管柄囊霉(Fm)和幼套球囊霉(Ge),并将这两类菌双接种,分别为BmBs、BmFm、BmGe、BsFm、BsGe、FmGe,以加灭活菌为对照(CK),共计11个处理。测定接菌处理后紫花苜蓿地上生物量、株高、茎粗、粗蛋白含量、中性洗涤纤维、酸性洗涤纤维、苜蓿植株磷含量、主根长、地下生物量、土壤pH、土壤全磷和速效磷含量,通过隶属函数法综合各项指标评价单接种菌和双接种菌对苜蓿的应用效果。【结果】紫花苜蓿的地上生物量、株高、茎粗、粗蛋白含量、植株磷含量、主根长、地下生物量和土壤速效磷含量均为接菌处理显著高于CK(P<0.05),土壤pH、全磷、中性洗涤纤维和酸性洗涤纤维含量均显著低于CK(P<0.05)。与CK相比,苜蓿地下生物量、株高和茎粗在单施解磷细菌Bm和Bs处理下分别增加了18.57%—24.49%、8.59%—21.33%和3.86%—9.54%,在单施丛枝菌根真菌Fm和Ge处理下分别增加了9.15%—27.35%、2.51%—18.60%和4.59—8.58%,双接种BmBs、BmFm、BmGe、BsFm、BsGe、FmGe处理下分别增加了7.66%—41.62%、7.44%—34.56%和5.58%—26.61%。单施Fm和Ge处理苜蓿的主根长均显著大于单施Bm和Bs处理(P<0.05),但Fm和Ge处理之间、Bm和Bs处理之间差异均不显著(P>0.05);双接菌处理中,FmGe处理苜蓿的主根长最长,且显著大于其他施菌处理(P<0.05),其中BmBs处理对紫花苜蓿主根长的效应最弱。相关性分析表明,除酸性洗涤纤维含量与茎粗呈负相关不显著(P>0.05),地下生物量与苜蓿磷呈正相关不显著(P>0.05),与土壤全磷呈负相关不显著(P>0.05)外,其他各指标之间均为显著或极显著正相关、显著或极显著负相关。采用隶属函数法综合各项指标进行评价,对苜蓿生产性能影响较大的接菌处理前3位排序为BmFm、BmGe和FmGe处理。【结论】PSB和AMF同时接种,对苜蓿植株生长发育和磷营养促生效果优于单一接种PSB或AMF,其促进作用的大小与PSB和AMF的种类有关。从紫花苜蓿生长状况、植株的磷营养及地下生物量指标综合考虑,解磷细菌巨大芽孢杆菌(Bm)与丛枝菌根真菌摩西管柄囊霉(Fm)同时接种(即BmFm处理),对紫花苜蓿的生长发育和磷营养的改善效果最好,其次是BmGe处理。
孙艳梅,张前兵,苗晓茸,刘俊英,于磊,马春晖. 解磷细菌和丛枝菌根真菌对紫花苜蓿生产性能及地下生物量的影响[J]. 中国农业科学, 2019, 52(13): 2230-2242.
SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa[J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
表1
不同菌处理下紫花苜蓿地下生物量及土壤磷含量"
处理 Treatment | 主根长 Taproot length (cm) | 地下生物量 Under-ground biomass (g/pot) | pH | 土壤全磷 Total phosphorus in soil (g·kg-1) | 土壤速效磷 Available phosphorus in soil (mg·kg-1) |
---|---|---|---|---|---|
CK | 28.87±0.36g | 6.07±0.05k | 7.63±0.13a | 1.142±0.063a | 20.95±0.14h |
Bm | 33.43±0.25f | 10.86±0.13h | 7.33±0.02cde | 0.904±0.016fgh | 28.63±0.37d |
Bs | 32.21±0.22f | 9.27±0.06f | 7.44±0.07bc | 0.964±0.017def | 25.25±0.26f |
Fm | 34.94±0.34e | 14.93±0.14g | 7.40±0.04bcd | 1.073±0.047bc | 27.56±0.31e |
Ge | 33.92±0.21e | 13.87±0.15i | 7.49±0.05b | 1.021±0.020cd | 25.55±0.24f |
BmBs | 31.94±0.42f | 12.14±0.09i | 7.41±0.11bc | 1.094±0.019ab | 23.37±0.22ab |
BmFm | 39.07±0.47b | 19.07±0.19b | 7.15±0.12f | 0.836±0.018h | 31.19±0.38a |
BmGe | 38.72±0.28b | 17.33±0.11d | 7.24±0.06ef | 0.872±0.025gh | 30.74±0.35ab |
BsFm | 36.14±0.12c | 17.67±0.05c | 7.34±0.05cde | 0.926±0.022efg | 30.42±0.29bc |
BsGe | 35.45±0.23d | 16.04±0.13e | 7.21±0.07ef | 0.943±0.054ef | 30.04±0.48c |
FmGe | 39.83±0.27a | 20.94±0.18a | 7.26±0.03def | 0.977±0.060de | 28.71±0.31d |
表2
不同菌处理下紫花苜蓿生长"
处理 Treatment | 地上生物量 Above-ground biomass (g/pot) | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | |||||
---|---|---|---|---|---|---|---|---|
第1茬 First cut | 第2茬 Second cut | 第1茬 First cut | 第2茬 Second cut | 第1茬 First cut | 第2茬 Second cut | |||
CK | 18.47±0.02i | 13.31±0.08i | 37.41±0.53i | 32.26±0.42g | 2.83±0.09h | 2.44±0.03h | ||
Bm | 22.23±0.15e | 16.57±0.17e | 45.39±0.45d | 36.91±0.49c | 3.1±0.03ef | 2.65±0.06def | ||
Bs | 21.90±0.21f | 15.93±0.04f | 43.25±0.26f | 35.03±0.35de | 3.01±0.02fg | 2.52±0.05gh | ||
Fm | 21.74±0.05f | 16.95±0.09d | 44.37±0.82e | 34.42±0.41e | 3.15±0.03de | 2.68±0.06de | ||
Ge | 20.16±0.24h | 14.92±0.19g | 42.21±0.38g | 33.07±0.36f | 2.96±0.05g | 2.63±0.07def | ||
BmBs | 20.83±0.18g | 14.33±0.22h | 40.32±0.32h | 34.66±0.25e | 3.06±0.02ef | 2.56±0.09fg | ||
BmFm | 25.31±0.11a | 18.85±0.15a | 50.34±0.39a | 42.91±0.38a | 3.32±0.05b | 2.82±0.05b | ||
BmGe | 25.03±0.18a | 18.07±0.25b | 48.67±0.34b | 36.75±0.24c | 3.29±0.06bc | 2.79±0.04bc | ||
BsFm | 23.76±0.21c | 17.55±0.13c | 46.42±0.51c | 35.65±0.43d | 3.28±0.07bc | 2.74±0.03bcd | ||
BsGe | 23.28±0.18d | 16.15±0.07f | 45.63±0.35d | 35.38±0.32d | 3.22±0.04cd | 2.71±0.09cde | ||
FmGe | 24.7±0.14b | 18.20±0.14b | 49.70±0.27a | 40.08±0.34b | 3.43±0.06a | 3.05±0.02a |
表3
不同菌处理下紫花苜蓿的营养品质"
处理 Treatment | 粗蛋白 Crude protein (%) | 中性洗涤纤维 Neutral detergent fiber (%) | 酸性洗涤纤维 Acid detergent fiber (%) | 苜蓿磷 Phosphorus concentration in alfalfa (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
第1茬 First cut | 第2茬 Second cut | 第1茬 First cut | 第2茬 Second cut | 第1茬 First cut | 第2茬 Second cut | 第1茬 First cut | 第2茬 Second cut | ||||
CK | 16.45±0.21h | 17.58±0.11h | 40.98±0.31a | 41.78±0.53a | 32.63±0.33a | 32.98±0.44a | 0.242±0.008f | 0.223±0.002f | |||
Bm | 18.63±0.47cd | 19.45±0.28bc | 37.59±0.39de | 40.40±0.49c | 28.32±0.29f | 28.52±0.33fg | 0.294±0.009bc | 0.255±0.008c | |||
Bs | 18.57±0.22cde | 18.87±0.04ef | 38.03±0.48d | 41.28±0.38ab | 29.56±0.33cd | 29.63±0.46d | 0.277±0.016cde | 0.248±0.003cd | |||
Fm | 18.35±0.09def | 19.05±0.14de | 38.96±0.39bc | 38.78±0.37e | 28.87±0.36e | 29.73±0.22d | 0.266±0.022de | 0.233±0.008ef | |||
Ge | 18.22±0.18bc | 18.54±0.22fg | 39.49±0.23b | 41.65±0.28a | 29.19±0.41de | 30.88±0.26c | 0.252±0.012ef | 0.229±0.002ed | |||
BmBs | 17.94±0.23g | 18.39±0.17g | 38.88±0.47bc | 41.62±0.26a | 30.73±0.25b | 31.94±0.31b | 0.255±0.018ef | 0.236±0.004e | |||
BmFm | 19.41±0.15a | 19.99±0.26a | 35.61±0.36g | 37.87±0.28f | 26.01±0.21i | 27.14±0.32h | 0.324±0.012a | 0.288±0.007a | |||
BmGe | 19.13±0.21ab | 19.72±0.24ab | 36.81±0.32f | 39.43±0.23d | 27.75±0.22g | 28.26±0.06g | 0.303±0.016ab | 0.269±0.005b | |||
BsFm | 18.79±0.16bc | 19.35±0.15bcd | 37.14±0.16ef | 39.61±0.27d | 26.65±0.34h | 29.03±0.31ef | 0.291±0.002bcd | 0.253±0.009cd | |||
BsGe | 18.05±0.14fg | 18.82±0.28df | 38.67±0.35c | 41.47±0.34ab | 28.98±0.27e | 29.46±0.38de | 0.286±0.017bcd | 0.247±0.009cd | |||
FmGe | 18.46±0.08cde | 19.20±0.25cde | 36.77±0.19f | 40.88±0.33bc | 29.89±0.38c | 30.81±0.25c | 0.290±0.007bcd | 0.239±0.006de |
表4
不同菌处理下紫花苜蓿各指标相关性分析"
指标 Index | 主根长Taproot | 地下生物量Under-ground biomass | pH | 全磷 Total phosphorus | 速效磷Available phosphorus | 地上生物量 Above-ground biomass | 株高 Plant height | 茎粗 Stem | 粗蛋白 Crude protein | 中性洗 涤纤维 Neutral detergent fiber | 酸性洗 涤纤维 Acid detergent fiber |
---|---|---|---|---|---|---|---|---|---|---|---|
地下生物量Under-ground biomass | 0.957** | ||||||||||
pH | -0.857** | -0.807** | |||||||||
全磷 Total phosphorus | -0.714* | -0.576 | 0.822** | ||||||||
速效磷 Available phosphorus | 0.863** | 0.811** | -0.903** | -0.874** | |||||||
地上生物量Above-ground biomass | 0.939** | 0.856** | -0.906** | -0.840** | 0.923** | ||||||
株高 Plant height | 0.918** | 0.825** | -0.900** | -0.821** | 0.847** | 0.956** | |||||
茎粗 Stem | 0.958** | 0.947** | -0.840** | -0.620* | 0.814** | 0.910** | 0.897** | ||||
粗蛋白 Crude protein | 0.807** | 0.705* | -0.820** | -0.886** | 0.877** | 0.902** | 0.859** | 0.715* | |||
中性洗涤纤维 Neutral detergent fiber | -0.808** | -0.713* | 0.790** | 0.796** | -0.829** | -0.914** | -0.895** | -0.741** | -0.923** | ||
酸性洗涤纤维 Acid detergent fiber | -0.692* | -0.607* | 0.776** | 0.905** | -0.900** | -0.822** | -0.762** | -0.576 | -0.934** | 0.883** | |
苜蓿磷 Phosphorus concentration in alfalfa | 0.719* | 0.570 | -0.847** | -0.936** | 0.824** | 0.874** | 0.882** | 0.642* | 0.875** | -0.900** | -0.877** |
表5
不同菌处理下紫花苜蓿各指标综合评价"
指标Index | CK | Bm | Bs | Fm | Ge | BmBs | BmFm | BmGe | BsFm | BsGe | FmGe |
---|---|---|---|---|---|---|---|---|---|---|---|
主根长Taproot | 0.000 | 0.415 | 0.304 | 0.552 | 0.460 | 0.280 | 0.927 | 0.896 | 0.661 | 0.599 | 1.000 |
地下生物量Under-ground biomass | 0.000 | 0.323 | 0.216 | 0.596 | 0.525 | 0.409 | 0.874 | 0.757 | 0.780 | 0.671 | 1.000 |
pH | 0.000 | 0.625 | 0.396 | 0.479 | 0.292 | 0.458 | 1.000 | 0.813 | 0.604 | 0.875 | 0.771 |
全磷Total phosphorus | 0.000 | 0.775 | 0.580 | 0.225 | 0.394 | 0.156 | 1.000 | 0.879 | 0.704 | 0.648 | 0.537 |
速效磷Available phosphorus | 0.000 | 0.750 | 0.420 | 0.646 | 0.449 | 0.236 | 1.000 | 0.956 | 0.925 | 0.888 | 0.758 |
地上生物量Above-ground biomass | 0.000 | 0.567 | 0.489 | 0.559 | 0.267 | 0.274 | 1.000 | 0.914 | 0.770 | 0.618 | 0.898 |
株高Plant height | 0.000 | 0.536 | 0.365 | 0.387 | 0.238 | 0.225 | 1.000 | 0.668 | 0.526 | 0.481 | 0.853 |
茎粗Stem | 0.008 | 0.402 | 0.221 | 0.467 | 0.270 | 0.295 | 0.721 | 0.672 | 0.623 | 0.549 | 1.000 |
粗蛋白Crude protein | 0.000 | 0.755 | 0.636 | 0.628 | 0.509 | 0.429 | 1.000 | 0.898 | 0.766 | 0.530 | 0.677 |
中性洗涤纤维Neutral detergent fiber | 0.000 | 0.514 | 0.372 | 0.541 | 0.175 | 0.244 | 1.000 | 0.703 | 0.648 | 0.282 | 0.551 |
酸性洗涤纤维Acid detergent fiber | 0.000 | 0.704 | 0.515 | 0.563 | 0.445 | 0.236 | 1.000 | 0.770 | 0.797 | 0.575 | 0.394 |
苜蓿磷Phosphorus concentration in alfalfa | 0.000 | 0.571 | 0.408 | 0.231 | 0.109 | 0.177 | 1.000 | 0.728 | 0.537 | 0.463 | 0.435 |
平均值Average | 0.001 | 0.578 | 0.410 | 0.489 | 0.344 | 0.285 | 0.960 | 0.805 | 0.695 | 0.598 | 0.739 |
排序Rank | 11 | 6 | 8 | 7 | 9 | 10 | 1 | 2 | 4 | 5 | 3 |
[1] | 张前兵, 于磊, 鲁为华, 马春晖, 和海秀 . 优化灌溉制度提高苜蓿种植当年产量及品质. 农业工程学报, 2016,32(23):116-122. |
ZHANG Q B, YU L, LU W H, MA C H, HE H X . Optimal irrigation regime improving yield and quality of alfalfa in year of sowing. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(23):116-122.(in Chinese) | |
[2] | 苏亚丽, 张力君, 孙启忠, 乌艳红, 杨秀芳, 吕宁 . 水肥耦合对敖汉苜蓿营养成分的影响. 草地学报, 2011,19(5):821-824. |
SU Y L, ZHANG L J, SUN Q Z, WU Y H, YANG X F, LÜ N . Effects of variable water and nutrient regimes on nutrients of alfalfa. Acta Agrestia Sinica, 2011,19(5):821-824. (in Chinese) | |
[3] | 赵小蓉, 林启美, 孙焱鑫, 张有山, 张美庆 . 玉米根际与非根际解磷细菌的分布特点. 生态学杂志, 2001,20(6):62-64. |
ZHAO X R, LIN Q M, SUN Y X, ZHANG Y S, ZHANG M Q . Phosphobacteria distribution in rhizophere and nonrhizosphere soil of corn. Chinese Journal of Ecology, 2001,20(6):62-64. (in Chinese) | |
[4] | 王誉瑶, 韦中, 徐阳春, 沈其荣 . 溶磷菌株组合的溶磷效应及对玉米生长的影响. 植物营养与肥料学报, 2017,23(1):262-268. |
WANG Y Y, WEI Z, XU C Y, SHEN Q R . Dissolving capacity of phosphate dissolving bacteria strains combination and their effects on corn growth. Journal of Plant Nutrition and Fertilizer, 2017,23(1):262-268. (in Chinese) | |
[5] |
RODRIGUEZ H, FRAGA R . Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999,17(4/5):319-339.
doi: 10.1016/S0734-9750(99)00014-2 |
[6] | 李海云, 姚拓, 张榕, 张洁, 李智燕, 荣良燕, 路晓雯, 杨晓蕾, 夏东慧, 罗慧琴 . 红三叶根际溶磷菌株分泌有机酸与溶磷能力的相关性研究. 草业学报, 2018,27(12):113-121. |
LI H Y, YAO T, ZHANG R, ZHANG J, LI Z Y, RONG L Y, LU X W, YANG X L, XIA D H, LUO H Q . Relationship between organic acids secreted from rhizosphere phosphate-solubilizing bacteria in Trifolium pratense and phosphate-solubilizing ability. Acta Prataculturae Sinica, 2018,27(12):113-121.(in Chinese) | |
[7] |
韩华雯, 孙丽娜, 姚拓, 荣良燕, 刘青海, 卢虎, 马晖玲 . 不同促生菌株组合对紫花苜蓿产量和品质的影响. 草业学报, 2013,22(5):104-112.
doi: 10.11686/cyxb20130512 |
HAN H W, SUN L N, YAO T, RONG L Y, LIU Q H, LU H, MA H L . Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013,22(5):104-112.(in Chinese)
doi: 10.11686/cyxb20130512 |
|
[8] | 韩光, 张磊, 邱勤, 石杰, 胡正峰 . 复合型PGPR和苜蓿对新垦地土壤培肥效果研究. 土壤学报, 2011,48(2):405-411. |
HAN G, ZHANG L, QIU Q, SHI J, HU Z F . Effects of PGPR and alfalfa on soil building of newly-reclaimed land. Acta Pedologica Sinica, 2011,48(2):405-411.(in Chinese) | |
[9] | 李玉娥, 姚拓, 荣良燕 . 溶磷菌溶磷和分泌IAA特性及对苜蓿生长的影响. 草地学报, 2010,18(1):84-88. |
LI Y E, YAO T, RONG L Y . Characteristics of IAA secretion and phosphate dissolving of phosphate-solubilizing bacteria and its effect on alfalfa growth. Acta Agrestia Sinica, 2010,18(1):84-88.(in Chinese) | |
[10] |
THAKUR D, KAUSHAL R, SHYAM V . Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-A review. Agricultural Reviews, 2014,35(3):159.
doi: 10.5958/0976-0741.2014.00903.9 |
[11] | 张维娜, 孙梅, 陈秋红, 施大林, 匡群 . 巨大芽孢杆菌JD-2的解磷效果及对土壤有效磷化的研究. 吉林农业科学, 2012,37(5):38-41. |
ZHANG W N, SUN M, CHEN Q H, SHI D L, KUANG Q . Studies on the effect of Bucillus megaterium JD-2 in dissolving P and soil available phosphorus. Journal of Jilin Agricultural Sciences, 2012,37(5):38-41.(in Chinese) | |
[12] | 王琰 . 解磷芽孢杆菌的筛选鉴定及其对玉米促生机理的研究[D]. 广州: 华南农业大学, 2016. |
WANG Y . Study on isolation of phosphate-solubilizing bacillus and their impact of growth-promoting for maize[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese) | |
[13] | 柳艳艳, 骆洪义, 王凤忠, 周波, 韩明渠, 王芳 . 巨大芽孢杆菌(BM002)生物有机肥对油菜生长发育的影响. 山东农业科学, 2012,44(7):63-66. |
LIU Y Y, LUO H Y, WANG F Z, ZHOU B, HAN M Q, WANG F . Effect of Bacillus megaterium (BM002) microbial organic fertilizer on growth and development of rape. Shandong Agricultural Sciences, 2012,44(7):63-66.(in Chinese) | |
[14] |
XU Z Y, BAN Y H, JIANG Y H, ZHANG X L, LIU X Y . Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: A review. Pedosphere, 2016,26(5):592-617.
doi: 10.1016/S1002-0160(15)60067-4 |
[15] | 舒波, 李伟才, 刘丽琴, 魏永赞, 石胜友 . 丛枝菌根(AM)真菌与共生植物物质交换研究进展. 植物营养与肥料学报, 2016,22(4):1111-1117. |
SHU B, LI W C, LIU L Q, WEI Y Z, SHI S Y . Progress on material exchange between arbuscular mycorrhizal(AM) fungi and host plant: A review. Journal of Plant Nutrition and Fertilizer, 2016,22(4):1111-1117.(in Chinese) | |
[16] | 王庆峰, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊 . 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响. 中国农业科学, 2018,51(17):3315-3324. |
WANG Q F, JIANG X, MA M C, GUAN D W, ZHAO B S, WEI D, CAO F M, LI L, LI J . Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in Mollisols of Northeast China. Scientia Agricultura Sinica, 2018,51(17):3315-3324.(in Chinese) | |
[17] | WILLMANN M, GERLACH, BUER B, POLATAJKO A, NAGY R, KOEBKE E, JANSA J, FLISCH R, BUCHER M . Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 2013,26(4):523. |
[18] | 宋圆圆, 夏明, 林熠斌, 林娴慧, 丁朝晖, 王杰, 胡林, 曾任森 . 丛枝菌根真菌摩西管柄囊霉侵染增强番茄对机械损伤的响应. 应用生态报, 2018,29(11):3811-3818. |
SONG Y Y, XIA M, LIN Y B, LIN X H, DING C H, WANG J, HU L, ZENG R S . Colonization with arbuscular mycorrhizal fungus Funneliformis mosseae enhanced the responses of tomato plants to mechanical wounding. Chinese Journal of Applied Ecology, 2018,29(11):3811-3818.(in Chinese) | |
[19] | 郭静, 罗培宇, 杨劲峰, 李冬冬, 黄月玥, 韩晓日 . 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响. 中国农业科学, 2018,51(24):4677-4689. |
GOU J, LUO P Y, YANG J F, LI D D, HUANG Y Y, HAN X R . Influence of long-term fertilization on community structures and colonization of arbuscular mycorrhizal fungi in a brown soil. Scientia Agricultura Sinica, 2018,51(24):4677-4689.(in Chinese) | |
[20] |
SMITH S E, SMITH F A . Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011,62(1):227-250.
doi: 10.1146/annurev-arplant-042110-103846 |
[21] |
LIU C, RAVNSKOV S, LIU F, RUBAEK G H, ANDERSEN M N . Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. The Journal of Agricultural Science, 2018,156(1):46-48.
doi: 10.1017/S0021859618000023 |
[22] |
GIOVANNETTI M, SBRANA C, AVIO L, STRANI P . Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytologist, 2004,164(1):175-181.
doi: 10.1111/j.1469-8137.2004.01145.x |
[23] | MORTIMER P E, PEREZFERNANDEZ M A, VALENTINE A J . The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology & Biochemistry, 2008,40(5):1019-1027. |
[24] | 任爱天, 鲁为华, 杨洁晶, 刘红玲, 马春晖 . 不同磷水平下AM真菌对紫花苜蓿生长和磷利用的影响. 中国草地学报, 2014,36(6):72-78. |
REN A T, LU W H, YANG J J, LIU H L, MA C H . Effects of arbuscular mycorrhizal fungi (AMF) on growth of alfalfa and phosphorus utilization under different P levels. Chinese Journal of Grassland, 2014,36(6):72-78.(in Chinese) | |
[25] | 黎绍鹏, 林哲, 李德智, 陈保瑜, 叶少萍, 辛国荣 . 多花黑麦草根际土壤丛枝菌根真菌对早稻生长的影响. 生态科学, 2010,29(5):411-416. |
LI S P, LIN Z, LI D Z, CHEN B Y, YE S P, XIN G R . Effects of arbuscular mycorrhizal fungi in the rhizosphere of Italian ryegrass on succeeding rice growth. Ecological Science, 2010,29(5):411-416.(in Chinese) | |
[26] | 甄莉娜, 王润梅, 杨俊霞, 李侠, 张英俊 . 丛枝菌根真菌与氮肥对羊草生长的影响. 中国草地学报, 2018,40(3):49-54. |
ZHEN L N, WANG R M, YANG J X, LI X, ZHANG Y J . Effects of arbuscular mycorrhizal fungi and nitrogen fertilizer on the growth of Leymus chinensis. Chinese Journal of Grassland, 2018,40(3):49-54. (in Chinese) | |
[27] |
ZIANE H, MEDDAD-HAMZA A, BEDDIAR A, GIANINAZZI S . Effects of arbuscular mycorrhizal fungi and fertilization levels on industrial tomato growth and production. International Journal of Agriculture and Biology, 2017,19(2):341-347.
doi: 10.17957/IJAB |
[28] | 秦芳玲, 田中民 . 同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响. 西北农林科技大学学报(自然科学版), 2009,37(6):151-157. |
QIN F L, TIAN Z M . Effect of co-inoculation with arbuscular mycorrhizal fungi and four different phosphate-solubilizing bacteria on nutrients uptake of red clover in a low phosphorus soil. Journal of Northwest A & F University (Natural Science Edition.), 2009,37(6):151-157.(in Chinese) | |
[29] | MUTHUKUMAR T, UDAIYAN K, RAJESHKANNAN V . Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen- fixing bacteria under tropical nursery conditions. Biology and Fertility of Soils, 2001,34(6):417-426. |
[30] |
ZHANG L, DING X, CHEN S, HE X, ZHANG F, FENG G . Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interactions, 2014,9(1):850-856.
doi: 10.1080/17429145.2014.977831 |
[31] | BABANA A H, ANTOUN H . Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant & Soil, 2006,287(1/2):51-58. |
[32] | ZHANG L, FAN J Q, DING X D, HE X H, ZHANG F S, FENG G . Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology & Biochemistry, 2014,74(1/7):177-183. |
[33] |
ZAIDI A . Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Australian Journal of Experimental Agriculture, 2007,47(8):1016-1022.
doi: 10.1071/EA06046 |
[34] |
JORQUERA M A, HERNANDEZ M T, RENGEL Z, MARSCHNER P, MORA M L . Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 2008,44(8):1025-1034.
doi: 10.1007/s00374-008-0288-0 |
[35] |
VAN SOEST P J, ROBERTSON J B, LEWIS B A . Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991,74(10):3583-3597.
doi: 10.3168/jds.S0022-0302(91)78551-2 |
[36] |
FAN J W, DU Y L, WANG B R, TURNER N C, WANG T, ABBOTT L K, STEFANOVA K , SIDDIQUE K H M, LI F M . Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Research, 2016,198(11):247-257.
doi: 10.1016/j.fcr.2016.08.014 |
[37] | 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
LU R K. Methods of Soil Agricultural Chemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese) | |
[38] | 张凡凡, 和海秀, 于磊, 鲁为华, 张前兵, 马春晖 . 天山西部高山区夏季放牧草地4种重要牧草营养品质评价. 草业学报, 2017,26(8):207-215. |
ZHANG F F, HE H X, YU L, LU W H, ZHANG Q B, MA C H . Nutritional quality of four important herbage species in summer grazing grassland in the alpine zone, west Tianshan Mountain. Acta Prataculturae Sinica, 2017,26(8):207-215. (in Chinese) | |
[39] | ABEL S, TICCONI C A, DELATORRE C A . Phosphate sensing in higher plant. Physiologia Plantarum, 2010,115(1):1-8. |
[40] |
张凡凡, 于磊, 马春晖, 张前兵, 鲁为华 . 绿洲区滴灌条件下施磷对紫花苜蓿生产性能及品质的影响. 草业学报, 2015,24(10):175-182.
doi: 10.11686/cyxb2014467 |
ZHANG F F, YU L, MA C H, ZHANG Q B, LU W H . Effect of phosphorus application under drip irrigation on the productivity and quality of alfalfa in Northern Xinjiang. Acta Prataculturae Sinica, 2015,24(10):175-182.(in Chinese)
doi: 10.11686/cyxb2014467 |
|
[41] | 李海云, 姚拓, 师尚礼, 王国基, 唐玉, 范宇航, 胡鸿娇, 朱熙栋 . 复合菌剂对玉米根际土壤酶活性和微生物数量的影响. 草原与草坪, 2018,38(6):19-26. |
LI H Y, YAO T, SHI S L, WANG G J, TANG Y, FAN Y H, HU H J, ZHU X D . Effect of compound inoculants on maize rhizosphere soil enzyme activity and microbial quantity. Grassland and Turf, 2018,38(6):19-26.(in Chinese) | |
[42] | 田蜜, 陈应龙, 李敏, 刘润进 . 丛枝菌根结构与功能研究进展. 应用生态学报, 2013,24(8):2369-2376. |
TIAN M, CHEN Y L, LI M, LIU R J . Structure and function of arbuscular mvcorrhiza: A review. Chinese Journal of Applied Ecology, 2013,24(8):2369-2376.(in Chinese) | |
[43] | 刘兆娜, 郭绍霞, 李伟 . AM真菌对百合生长和生理特性的影响. 草业学报, 2017,26(11):85-93. |
LIU Z N, GOU S X, LI W . Effects of arbuscular mycorhizal fungi on growth and physiological characteristics of Lilium brownii. Acta Prataculturae Sinica, 2017,26(11):85-93.(in Chinese) | |
[44] | 李文彬, 卢文倩, 谢佳委, 刘艳敏, 刘润进, 郭绍霞 . 丛枝菌根真菌对郁金香生长及其切花生理的影响. 菌物学报, 2018,37(4):456-465. |
LIU W B, LU W J, XIE J W, LIU Y M, LIU R J, GUO S X . Effects of arbuscular mycorrhizal fungi on the growth and cut flower physiology of Tulipa gesneriana. Mycosystema, 2018,37(4):456-465. (in Chinese) | |
[45] |
JONES M D, SMITH S E . Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Canadian Journal of Botany, 2004,82(8):1089-1109.
doi: 10.1139/b04-110 |
[46] | PARNISKE M . Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 2008,6(10):763-775. |
[47] | THANGAVELU M, KARUTHAMUTHU U . Coinoculation of bioinoculants improve Acacia auriculiformis seedling growth and quality in a tropical Alfisol soil. Journal of Forestry Research, 2018,29(3):663-673. |
[48] |
MIRANSARI M . Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 2011,89(4):917-930.
doi: 10.1007/s00253-010-3004-6 |
[49] | 付晓峰, 张桂萍, 张小伟, 任嘉红 . 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响. 西北植物学报, 2016,36(2):353-360. |
FU X F, ZHANG G P, ZHANG X W, REN J H . Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2016,36(2):353-360. (in Chinese) | |
[50] | TAMEHIRO N, OKAMOTO-HOSOYA Y, OKAMOTO S, UBUKATA M, HAMADA M, NAGANAWA H, OCHI K . Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrobial Agents and Chemotherapy, 2002,46(2):315-320. |
[51] |
CHEN G C, HE Z L . Microbial biomass phosphorus turnover in variable-charge soils in China. Communications in Soil Science and Plant Analysis, 2002,33(13/14):2101-2117.
doi: 10.1081/CSS-120005751 |
[52] | TORO M, AZCON R, BAREA J . Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate- solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32)P) and nutrient cycling. Applied and Environmental Microbiology, 1997,63(11):4408-4412. |
[53] |
BENDER S F, CONEN F , VAN, D H M G A . Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 2015,80:283-292.
doi: 10.1016/j.soilbio.2014.10.016 |
[54] |
HEIJDEN M G A V D, BARDGETT R D, STRAALEN N M V . The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology letters, 2008,11(3):296-310.
doi: 10.1111/ele.2008.11.issue-3 |
[55] | BAUDOIN E, NAZARET S, MOUGEL C, RANJARD L, MOENNE- LOCCOZ Y . Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRL7 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biology& Biochemistry, 2009,41(2):409-413. |
[56] | 李娜, 乔志伟, 洪坚平, 谢英荷, 张铁全 . 磷细菌在复垦土壤上生长规律及对磷解析特性的影响. 中国生态农业学报, 2015,23(8):964-972. |
LI N, QIAO Z W, HONG J P, XIE Y H, ZHANG T Q . Phosphorus solubilizing bacteria growth and effects on soil phosphorus adsorption- desorption characteristics in reclaimed soils. Chinese Journal of Eco-Agriculture, 2015,23(8):964-972. (in Chinese) | |
[57] | 武志海, 刘晶晶, 杨美英, 卢冬雪, 岳胜天, 付丽 . 外源溶磷菌对不同土壤条件下大豆生长特性的影响. 大豆科学, 2017,36(1):78-86. |
WU Z H, LIU J J, YANG M Y, LU D X, YUE S T, FU L . Effects of exogenous phosphate-solubilizing bacteria on growth characteristics of soybean under different soil condition. Soybean Science, 2017,36(1):78-86. (in Chinese) | |
[58] | GEISSELER D, HORWATH W R, JOERENSEN R G, LUDWIG B . Pathways of nitrogen utilization by soil microorganisms - A review. Soil Biology & Biochemistry, 2011,42(12):2058-2067. |
[1] | 房昊源, 杨亮, 王洪壮, 曹锦承, 任万平, 魏胜娟, 颜培实. 夏季横向交互送风系统对肉牛生理和生产性能的影响[J]. 中国农业科学, 2022, 55(5): 1025-1036. |
[2] | 李扬眉,刘鑫,贾梦晗,仝宇欣. 光期湿度对植物工厂生菜干烧心及其营养品质的影响[J]. 中国农业科学, 2022, 55(20): 4011-4019. |
[3] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
[4] | 刘旺景,唐德富,敖长金. 沙葱及其提取物对小尾寒羊生产性能、胴体特征、肉品质和血清生化指标的影响[J]. 中国农业科学, 2022, 55(17): 3461-3472. |
[5] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[6] | 张晨曦, 田明慧, 杨硕, 杜嘉琪, 何堂庆, 仇云鹏, 张学林. 酸性土壤中丛枝菌根真菌菌剂多样性对玉米产量及其磷钾吸收的影响[J]. 中国农业科学, 2022, 55(15): 2899-2910. |
[7] | 张学林,何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000-2012. |
[8] | 翟胜男,刘爱峰,李法计,刘成,郭军,韩冉,訾妍,汪晓璐,吕莹莹,刘建军. 小麦籽粒黄色素含量检测方法的改良与应用[J]. 中国农业科学, 2021, 54(2): 239-247. |
[9] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[10] | 李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405. |
[11] | 孔亚丽,朱春权,曹小闯,朱练峰,金千瑜,洪小智,张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083. |
[12] | 张美琦,李妍,李树静,高艳霞,李建国,曹玉凤,李秋凤. 饲粮能量水平对荷斯坦阉牛生产性能、血液指标、屠宰性能及肉品质的影响[J]. 中国农业科学, 2021, 54(1): 203-212. |
[13] | 李华,方桂军,华国洪,谭淑雯,张正芬,洪煜宇,于辉. 清远麻慢羽公鸡的基因分型与生产性能研究[J]. 中国农业科学, 2020, 53(9): 1913-1920. |
[14] | 李泽民,张晨,张崇玉,张桂国. 不同品种苜蓿中营养成分相互关系及生物产量[J]. 中国农业科学, 2020, 53(6): 1269-1277. |
[15] | 苗建军,彭忠利,高彦华,柏雪,谢昕廷. 日粮中添加小肽对育肥牦牛生产性能和消化道PepT1 mRNA表达的影响[J]. 中国农业科学, 2020, 53(23): 4950-4960. |
|