中国农业科学 ›› 2022, Vol. 55 ›› Issue (10): 2000-2012.doi: 10.3864/j.issn.0578-1752.2022.10.010
张学林(),何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰
收稿日期:
2021-03-19
接受日期:
2021-06-10
出版日期:
2022-05-16
发布日期:
2022-06-02
作者简介:
张学林,Tel:13643867669;E-mail: 基金资助:
ZHANG XueLin(),HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng
Received:
2021-03-19
Accepted:
2021-06-10
Online:
2022-05-16
Published:
2022-06-02
摘要:
【目的】明确丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)影响玉米生育期土壤氧化亚氮(N2O)排放的机制,为增加玉米产量、提高氮素利用效率、减少温室气体排放提供理论依据。【方法】采用分室(生长室和菌丝室)箱体装置,盆栽设置氮肥用量(N1:180 kg N·hm-2;N2:360 kg N·hm-2)和丛枝菌根真菌(M0:作物根和AMF均不能从生长室进入菌丝室;M1:只有丛枝菌根真菌能从生长室进入菌丝室;M2:作物根和丛枝菌根真菌均能从生长室进入菌丝室)双因素试验,测定玉米生长期间植株生物量、植株氮素积累量、N2O排放量;采用Illumina平台Hiseq 2500 PE250高通量测序技术分析土壤细菌群落结构和多样性对丛枝菌根真菌的响应。【结果】氮肥用量和丛枝菌根真菌均显著影响玉米产量、植株生物量、植株氮素积累量和N2O排放量。不同氮肥用量条件下接种丛枝菌根真菌均显著增加玉米籽粒产量、植株生物量和氮素积累量。与M0相比,N1条件下M1和M2处理产量均值分别增加38%和82%,地上部氮素积累量增加30%和52%,无机氮含量减少26%和65%;N2条件下M1和M2处理籽粒产量分别增加16%和48%;地上部氮素积累量增加9%和33%,无机氮含量减少34%和55%。与M0相比, N1条件下M1和M2处理N2O累积排放量分别降低17%和40%,N2O排放强度分别降低41%和67%;而N2条件下N2O累积排放量降低26%和45%,排放强度分别降低28%和57%。NMDS 分析表明,施肥和丛枝菌根真菌均对细菌群落结构有较大影响。与N1均值相比,N2处理门水平变形菌门(Proteobacteria)和芽单胞菌门(Gemmatimonadetes)相对丰度分别降低6%和15%,而放线菌门(Actinobacteria)增加32%;属水平链霉菌(Streptomyces)增加27%,芽单胞菌属(Gemmatimonas)降低8%。与M0相比,N1条件下M1和M2处理的Streptomyces分别增加64%和205%,Gemmatimonas细菌丰度分别增加31%和53%;N2条件下M1和M2处理的Streptomyces分别增加10%和93%,M1处理的Gemmatimonas细菌丰度降低2%,M2处理Gemmatimonas细菌丰度增加56%。土壤中Streptomyces和Gemmatimonas与N2O排放量呈显著负相关,而与玉米产量呈显著正相关。【结论】不同氮肥水平玉米接种丛枝菌根真菌均能显著降低土壤N2O排放量,这种影响主要通过提高玉米氮素的吸收利用和改善土壤细菌群落组成实现的,其中主要增加了土壤链霉菌属和芽单胞菌属的相对丰度。
张学林,何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000-2012.
ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods[J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
表1
玉米籽粒产量、植株氮素积累量和土壤无机氮含量的方差分析"
处理 Treatment | 产量 Yield (g/plant) | 地上部氮素积累量 ANA (mg/plant) | 根系氮素积累量 RNA (mg/plant) | 硝态氮 NO3--N (mg·kg-1) | 无机氮 Inorganic N (mg·kg-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
N1M0 | 33.43c | 38.91c | 621.75d | 1041.00d | 51.18c | 84.37c | 101.37b | 39.14b | 108.05b | 40.46b |
N1M1 | 48.56c | 55.38b | 867.33c | 1287.15cd | 57.01bc | 96.50c | 54.40c | 28.25d | 61.93c | 29.79d |
N1M2 | 77.30b | 61.61b | 1041.61b | 1493.88bc | 77.59ab | 147.92ab | 39.34c | 12.70f | 44.62d | 14.07f |
N2M0 | 69.19b | 61.65b | 1040.61b | 1566.71abc | 60.31bc | 129.03b | 125.70a | 51.99a | 136.45a | 53.24a |
N2M1 | 70.44b | 62.32b | 1158.00b | 1674.16ab | 66.6abc | 139.52b | 60.09c | 33.32c | 66.11c | 35.02c |
N2M2 | 102.63a | 76.34a | 1580.41a | 1893.64a | 85.44a | 163.87a | 58.84c | 22.41e | 64.50c | 23.86e |
氮肥处理 Nitrogen (N) | 167.06*** | 16.64** | 108.43*** | 21.38*** | 2.59 | 42.88*** | 6.77* | 45.02*** | 7.22* | 41.62*** |
菌根处理 Mycorrhizae (M) | 120.83*** | 8.86** | 49.01*** | 5.68* | 7.98** | 31.81*** | 40.79*** | 138.86*** | 42.31*** | 125.63*** |
N×M | 3.80* | 1.58 | 3.21 | 0.22 | 0.009 | 3.11 | 0.78 | 2.71 | 1.18 | 2.33 |
表2
2016年不同处理间细菌观测物种、OTU数、估计指数(Chao 1、Shannon和Simpson)和覆盖度的比较"
处理Treatment | Species | OTU number | Chao1 | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
N1M0 | 3137a | 61950a | 3560a | 9.09b | 0.987b | 0.986b |
N1M1 | 3135a | 60272a | 3488a | 9.78a | 0.996a | 0.989a |
N1M2 | 3250a | 61658a | 3659a | 9.65a | 0.995ab | 0.987ab |
N2M0 | 3133a | 62337a | 3546a | 9.52ab | 0.995a | 0.987ab |
N2M1 | 3349a | 60040a | 3750a | 9.69a | 0.995a | 0.987ab |
N2M2 | 3133a | 62639a | 3465a | 9.61a | 0.995a | 0.988ab |
[1] |
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326(5949): 123-125. doi: 10.1126/science.1176985.
doi: 10.1126/science.1176985 |
[2] |
SHCHERBAK I, MILLAR N, ROBERTSON G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204. doi: 10.1073/pnas.1322434111.
doi: 10.1073/pnas.1322434111 |
[3] |
张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4): 966-975.
doi: 10.3724/SP.J.1011.2011.00966 |
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00966 |
|
[4] |
FIRESTONE M K, FIRESTONE R B, TIEDJE J M. Nitrous oxide from soil denitrification: factors controlling its biological production. Science, 1980, 208(4445): 749-751. doi: 10.1126/science.208.4445.749.
doi: 10.1126/science.208.4445.749 |
[5] |
QIU Y P, JIANG Y, GUO L J, ZHANG L, BURKEY K O, ZOBEL R W, REBERG-HORTON S C, SHEW H D, HU S J. Shifts in the composition and activities of denitrifiers dominate CO2 stimulation of N2O emissions. Environmental Science & Technology, 2019, 53(19): 11204-11213. doi: 10.1021/acs.est.9b02983.
doi: 10.1021/acs.est.9b02983 |
[6] |
SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250. doi: 10.1146/annurev-arplant-042110-103846.
doi: 10.1146/annurev-arplant-042110-103846 |
[7] |
陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014, 34(17): 4807-4815. doi: 10.5846/stxb201309242346.
doi: 10.5846/stxb201309242346 |
CHEN Y L, CHEN B D, LIU L, HU Y J, XU T L, ZHANG S. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecologica Sinica, 2014, 34(17): 4807-4815. doi: 10.5846/stxb201309242346. (in Chinese)
doi: 10.5846/stxb201309242346 |
|
[8] |
HODGE A, STORER K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil, 2015, 386(1/2): 1-19. doi: 10.1007/s11104-014-2162-1.
doi: 10.1007/s11104-014-2162-1 |
[9] |
CAVAGNARO T R, BARRIOS-MASIAS F H, JACKSON L E. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant and Soil, 2012, 353(1/2): 181-194. doi: 10.1007/s11104-011-1021-6.
doi: 10.1007/s11104-011-1021-6 |
[10] |
BENDER S F, PLANTENGA F, NEFTEL A, JOCHER M, OBERHOLZER H R, KÖHL L, GILES M, DANIELL T J, VAN DER HEIJDEN M G. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME Journal, 2014, 8(6): 1336-1345. doi: 10.1038/ismej.2013.224.
doi: 10.1038/ismej.2013.224 |
[11] |
BENDER S F, CONEN F, VAN DER HEIJDEN M G A. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 2015, 80: 283-292. doi: 10.1016/j.soilbio.2014.10.016.
doi: 10.1016/j.soilbio.2014.10.016 |
[12] |
LAZCANO C, BARRIOS-MASIAS F H, JACKSON L E. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biology and Biochemistry, 2014, 74: 184-192. doi: 10.1016/j.soilbio.2014.03.010.
doi: 10.1016/j.soilbio.2014.03.010 |
[13] |
ZHANG X, WANG L, MA F, SHAN D. Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies. Water, Air, & Soil Pollution, 2015, 226(7): 1-10. doi: 10.1007/s11270-015-2493-4.
doi: 10.1007/s11270-015-2493-4 |
[14] |
GUI H, GAO Y, WANG Z H, SHI L L, YAN K, XU J C. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Science of the Total Environment, 2021, 774: 145133. doi: 10.1016/j.scitotenv.2021.145133.
doi: 10.1016/j.scitotenv.2021.145133 |
[15] |
HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759. doi: 10.1073/pnas.1005874107.
doi: 10.1073/pnas.1005874107 |
[16] |
PELLEGRINO E, ÖPIK M, BONARI E, ERCOLI L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 2015, 84: 210-217. doi: 10.1016/j.soilbio.2015.02.020.
doi: 10.1016/j.soilbio.2015.02.020 |
[17] |
LEIGH J, HODGE A, FITTER A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 2009, 181(1): 199-207. doi: 10.1111/j.1469-8137.2008.02630.x.
doi: 10.1111/j.1469-8137.2008.02630.x. |
[18] |
VERESOGLOU S D, CHEN B D, RILLIG M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 2012, 46: 53-62. doi: 10.1016/j.soilbio.2011.11.018.
doi: 10.1016/j.soilbio.2011.11.018 |
[19] |
JANSSON J K, HOFMOCKEL K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18(1): 35-46. doi: 10.1038/s41579-019-0265-7.
doi: 10.1038/s41579-019-0265-7 |
[20] |
赵明明, 赵鑫盟, 希尼尼根, 于景丽. 农田土壤nirK和nirS型反硝化微生物的研究进展. 微生物前沿, 2018, 7(2): 65-72. doi: 10.12677/AMB.2018.72008.
doi: 10.12677/AMB.2018.72008 |
ZHAO M M, ZHAO X M, XI N N G, YU J L. Advances in nirK and nirS type denitrifying microbes of agricultural soils. Advances in Microbiology, 2018, 7(2): 65-72. doi: 10.12677/amb.2018.72008. (in Chinese)
doi: 10.12677/AMB.2018.72008 |
|
[21] |
曹文超, 宋贺, 王娅静, 覃伟, 郭景恒, 陈清, 王敬国. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10): 1781-1798. doi: 10.11674/zwyf.18441.
doi: 10.11674/zwyf.18441 |
CAO W C, SONG H, WANG Y J, QIN W, GUO J H, CHEN Q, WANG J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781-1798. doi: 10.11674/zwyf.18441. (in Chinese)
doi: 10.11674/zwyf.18441 |
|
[22] |
ATUL-NAYYAR A, HAMEL C, HANSON K, GERMIDA J. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza, 2009, 19(4): 239-246. doi: 10.1007/s00572-008-0215-0.
doi: 10.1007/s00572-008-0215-0 |
[23] |
赵乾旭, 史静, 夏运生, 张乃明, 宁东卫, 岳献荣, 杨海宏. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响. 中国农业科学, 2017, 50(14): 2696-2705. doi: 10.3864/j.issn.0578-1752.2017.14.006.
doi: 10.3864/j.issn.0578-1752.2017.14.006 |
ZHAO Q X, SHI J, XIA Y S, ZHANG N M, NING D W, YUE X R, YANG H H. Effect of AMF inoculation on N uptake of interspecific competition between maize and soybean growing on the purple soil. Scientia Agricultura Sinica, 2017, 50(14): 2696-2705. doi: 10.3864/j.issn.0578-1752.2017.14.006. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.006 |
|
[24] |
邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响. 植物营养与肥料学报, 2009, 15(6): 1380-1385. doi: 10.11674/zwyf.2009.0619.
doi: 10.11674/zwyf.2009.0619 |
DENG Y, SHEN H, LUO W Q, GUO T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1380-1385. doi: 10.11674/zwyf.2009.0619. (in Chinese)
doi: 10.11674/zwyf.2009.0619 |
|
[25] |
STORER K, COGGAN A, INESON P, HODGE A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytologist, 2018, 220(4): 1285-1295. doi: 10.1111/nph.14931.
doi: 10.1111/nph.14931 |
[26] |
WALDER F, NIEMANN H, NATARAJAN M, LEHMANN M F, BOLLER T, WIEMKEN A. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 2012, 159(2): 789-797. doi: 10.1104/pp.112.195727.
doi: 10.1104/pp.112.195727 |
[27] |
MIRANSARI M. Arbuscular mycorrhizal fungi and nitrogen uptake. Archives of Microbiology, 2011, 193(2): 77-81. doi: 10.1007/s00203-010-0657-6.
doi: 10.1007/s00203-010-0657-6 |
[28] | 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, https://kns.cnki.net/kcms/detail/11.1809.s.20210301.1319.006.html. |
ZHANG X L, LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, ZHOU Y N, HAO X F, YANG Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agronomica Sinica, https://kns.cnki.net/kcms/detail/11.1809.s.20210301.1319.006.html. (in Chinese) | |
[29] |
BARRETT G, CAMPBELL C D, FITTER A H, HODGE A. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 2011, 48(1): 102-105. doi: 10.1016/j.apsoil.2011.02.002.
doi: 10.1016/j.apsoil.2011.02.002 |
[30] | 韦莉莉, 卢昌熠, 丁晶, 俞慎. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控. 生态学报, 2016, 36(14): 4233-4243. |
WEI L L, LU C Y, DING J, YU S. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system. Acta Ecologica Sinica, 2016, 36(14): 4233-4243. (in Chinese) | |
[31] |
REYNOLDS H L, HARTLEY A E, VOGELSANG K M, BEVER J D, SCHULTZ P A. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytologist, 2005, 167(3): 869-880. doi: 10.1111/j.1469-8137.2005.01455.x.
doi: 10.1111/j.1469-8137.2005.01455.x. |
[32] |
VERESOGLOU S D, SEN R, MAMOLOS A P, VERESOGLOU D S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. Journal of Ecology, 2011, 99(6): 1339-1349. doi: 10.1111/j.1365-2745.2011.01863.x.
doi: 10.1111/j.1365-2745.2011.01863.x. |
[33] | 彭思利, 申鸿, 袁俊吉, 魏朝富, 郭涛. 丛枝菌根真菌对中性紫色土土壤团聚体特征的影响. 生态学报, 2011, 31(2): 498-505. |
PENG S L, SHEN H, YUAN J J, WEI CF, GUO T. Impacts of arbuscular mycorrhizal fungi on soil aggregation dynamics of neutral purple soil. Acta Ecologica Sinica, 2011, 31(2): 498-505. (in Chinese) | |
[34] |
CHEN Y L, CHEN B D, HU Y J, LI T, ZHANG X, HAO Z P, WANG Y S. Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia, 2013, 56(4-6): 205-212. doi: 10.1016/j.pedobi.2013.07.003.
doi: 10.1016/j.pedobi.2013.07.003 |
[35] |
VIAENE T, LANGENDRIES S, BEIRINCKX S, MAES M, GOORMACHTIG S. Streptomyces as a plant's best friend? FEMS Microbiology Ecology, 2016, 92(8): fiw119. doi: 10.1093/femsec/fiw119.
doi: 10.1093/femsec/fiw119 |
[36] |
高桂凤, 党博, 蔡柯, 霍勤. 1株解磷菌株鉴定及影响其解磷能力因素. 东北林业大学学报, 2020, 48(1): 102-104, 109. doi: 10.13759/j.cnki.dlxb.2020.01.018.
doi: 10.13759/j.cnki.dlxb.2020.01.018 |
GAO G F, DANG B, CAI K, HUO Q. Identification of A Streptomyces phosphorus-solubilizing strain and the factors affecting phosphorus-solubilizing ability. Journal of Northeast Forestry University, 2020, 48(1): 102-104, 109. doi: 10.13759/j.cnki.dlxb.2020.01.018. (in Chinese)
doi: 10.13759/j.cnki.dlxb.2020.01.018 |
|
[37] |
李莹, 夏丽丹, 包明琢, 张燕林, 周垂帆. 铁氧化物影响下生物质炭对土壤细菌群落结构的影响. 福建农林大学学报(自然科学版), 2021, 50(1): 115-124. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016.
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016 |
LI Y, XIA L D, BAO M Z, ZHANG Y L, ZHOU C F. Effects of biochar on the composition of bacterial community in brown soil under the influence of iron oxides. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(1): 115-124. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016. (in Chinese)
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016 |
|
[38] |
徐佳迎, 周金蓉, 吴杰, 王珏, 程粟裕, 赵鸽, 蒋静艳. 磺胺二甲嘧啶对稻田土壤微生物的中长期效应. 农业环境科学学报, 2020, 39(8): 1757-1766. doi: 10.11654/jaes.2020-0123.
doi: 10.11654/jaes.2020-0123 |
XU J Y, ZHOU J R, WU J, WANG J, CHENG S Y, ZHAO G, JIANG J Y. Medium-and long-term effects of the veterinary antibiotic sulfadiazine on soil microorganisms in a rice field. Journal of Agro-Environment Science, 2020, 39(8): 1757-1766. doi: 10.11654/jaes.2020-0123. (in Chinese)
doi: 10.11654/jaes.2020-0123 |
|
[39] |
KOBLÍŽEK M, DACHEV M, BÍNA D, NUPUR, PIWOSZ K, KAFTAN D. Utilization of light energy in phototrophic Gemmatimonadetes. Journal of Photochemistry and Photobiology B: Biology, 2020, 213: 112085. doi: 10.1016/j.jphotobiol.2020.112085.
doi: 10.1016/j.jphotobiol.2020.112085 |
[40] |
HERMAN D J, FIRESTONE M K, NUCCIO E, HODGE A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiology Ecology, 2012, 80(1): 236-247. doi: 10.1111/j.1574-6941.2011.01292.x.
doi: 10.1111/j.1574-6941.2011.01292.x. |
[41] |
张枝盛, 汪本福, 李阳, 杨晓龙, 胡杨, 王泠菲, 程建平. 氮肥模式对稻田温室气体排放和产量的影响. 农业环境科学学报, 2020, 39(6): 1400-1408. doi: 10.11654/jaes.2019-1185.
doi: 10.11654/jaes.2019-1185 |
ZHANG Z S, WANG B F, LI Y, YANG X L, HU Y, WANG L F, CHENG J P. Effects of different nitrogen regimes on greenhouse gas emissions and grain yields in paddy fields. Journal of Agro- Environment Science, 2020, 39(6): 1400-1408. doi: 10.11654/jaes.2019-1185. (in Chinese)
doi: 10.11654/jaes.2019-1185 |
|
[42] |
刘平静, 肖杰, 孙本华, 高明霞, 张树兰, 杨学云, 冯浩. 长期不同施肥措施下土细菌群落结构变化及其主要影响因素. 植物营养与肥料学报, 2020, 26(2): 307-315. doi: 10.11674/zwyf.19102.
doi: 10.11674/zwyf.19102 |
LIU P J, XIAO J, SUN B H, GAO M X, ZHANG S L, YANG X Y, FENG H. Variation of bacterial community structure and the main influencing factors in Eum-orthic Anthrosols under different fertilization regimes. Plant Nutrition and Fertilizer Science, 2020, 26(2): 307-315. doi: 10.11674/zwyf.19102. (in Chinese)
doi: 10.11674/zwyf.19102 |
|
[43] |
徐永刚, 宇万太, 马强, 周桦. 长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结构的影响. 应用生态学报, 2010, 21(8): 2078-2085. doi: 10.13287/j.1001-9332.2010.0288.
doi: 10.13287/j.1001-9332.2010.0288 |
XU Y G, YU W T, MA Q, ZHOU H. Effects of long-term fertilizations on microbial biomass C and N and bacterial community structure in an aquic brown soil. Chinese Journal of Applied Ecology, 2010, 21(8): 2078-2085. doi: 10.13287/j.1001-9332.2010.0288. (in Chinese)
doi: 10.13287/j.1001-9332.2010.0288 |
|
[44] |
孙瑞波, 郭熙盛, 王道中, 褚海燕. 长期施用化肥及秸秆还田对砂姜黑土细菌群落的影响. 微生物学通报, 2015, 42(10): 2049-2057. doi: 10.13344/j.microbiol.china.150031.
doi: 10.13344/j.microbiol.china.150031 |
SUN R B, GUO X S, WANG D Z, CHU H Y. The impact of long-term application of chemical fertilizers and straw returning on soil bacterial community. Microbiology China, 2015, 42(10): 2049-2057. doi: 10.13344/j.microbiol.china.150031. (in Chinese)
doi: 10.13344/j.microbiol.china.150031 |
|
[45] |
马琳, 孙本华, 孙瑞, 高明霞, 杨学云, 张树兰. 长期不同施肥对塿土细菌群落多样性的影响. 西北农业学报, 2015, 24(6): 162-170. doi: 10.7606/j.issn.1004-1389.2015.06.026.
doi: 10.7606/j.issn.1004-1389.2015.06.026 |
MA L, SUN B H, SUN R, GAO M X, YANG X Y, ZHANG S L. Effects of long-term different fertilization on bacterial community diversity in an anthropogenic lou soil. Acta Agriculturae Boreali- occidentalis Sinica, 2015, 24(6): 162-170. doi: 10.7606/j.issn.1004-1389.2015.06.026. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2015.06.026 |
|
[46] |
ZHANG S J, LEHMANN A, ZHENG W S, YOU Z Y, RILLIG M C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytologist, 2019, 222(1): 543-555. doi: 10.1111/nph.15570.
doi: 10.1111/nph.15570 |
[47] | 冯固, 白灯莎, 杨茂秋, 李晓林, 张福锁, 李生秀. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响. 作物学报, 2000, 26(6): 743-750. |
FENG G, BAI D S, YANG M Q, LI X L, ZHANG F S, LI S X. Influence of inoculating arbuscular mycorrhizal fungi on growth and salinity tolerance parameters of maize plants. Acta Agronomica Sinica, 2000, 26(6): 743-750. (in Chinese) | |
[48] |
TOLJANDER J F, SANTOS-GONZÁLEZ J C, TEHLER A, FINLAY R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiology Ecology, 2008, 65(2): 323-338. doi: 10.1111/j.1574-6941.2008.00512.x.
doi: 10.1111/j.1574-6941.2008.00512.x. |
[49] |
BAKHSHANDEH S, CORNEO P E, MARIOTTE P, KERTESZ M A, DIJKSTRA F A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agriculture, Ecosystems & Environment, 2017, 247: 130-136. doi: 10.1016/j.agee.2017.06.027.
doi: 10.1016/j.agee.2017.06.027 |
[1] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[9] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[10] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[11] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[12] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[13] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[14] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[15] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
|