中国农业科学 ›› 2021, Vol. 54 ›› Issue (18): 3805-3817.doi: 10.3864/j.issn.0578-1752.2021.18.002
收稿日期:
2021-02-03
接受日期:
2021-03-16
出版日期:
2021-09-16
发布日期:
2021-09-26
联系方式:
吴世洋,E-mail: 1773857571@qq.com。
基金资助:
WU ShiYang(),YANG XiaoYi,ZHANG YanWen,HOU DianYun,XU HuaWei(
)
Received:
2021-02-03
Accepted:
2021-03-16
Published:
2021-09-16
Online:
2021-09-26
摘要:
【目的】生长素输出载体蛋白(PIN-FORMED,PIN)是控制生长素极性运输的关键蛋白,水稻OsPIN9是单子叶植物特有的PIN基因,但其生物学功能仍有待研究。利用CRISPR/Cas9基因编辑技术对OsPIN9进行编辑,获得OsPIN9发生突变的基因编辑株系,对进一步深入研究OsPIN9功能提供依据。【方法】根据OsPIN9序列设计特异性编辑位点,构建OsPIN9编辑载体,以日本晴愈伤组织为受体,通过农杆菌介导法获得抗性植株,通过PCR鉴定转基因植株。转基因植株通过PCR和测序明确OsPIN9的突变类型,获得ospin9纯合突变体并分析突变蛋白与野生型蛋白的差异。qRT-PCR分析突变体幼苗根部OsPINs的表达,进一步明确突变体与野生型对照植株之间的表型差异。以0.05 μmol·L-1的萘乙酸(1-naphthaleneacetic acid,NAA)处理幼苗7 d,分析NAA对植株表型的影响。【结果】在水稻OsPIN9第1外显子处设计靶点并构建表达载体,通过遗传转化成功获得18株T0代转基因植株,测序分析发现转基因株系中有3种不同的突变方式,均为在靶位点的18位碱基处插入不同的单碱基,其中,3株插入T碱基,3株插入G碱基,1株插入C碱基,共获得基因编辑株系7株,进一步鉴定获得2种纯合突变体。序列比对分析表明,这两种类型的突变均造成移码突变和蛋白翻译提前终止,由原来的426个氨基酸缩短为172个氨基酸,跨膜螺旋结构域分析表明突变体中OsPIN9蛋白的跨膜结构完全消失。qRT-PCR分析表明,2个突变株系的OsPIN9转录水平显著降低,OsPIN1a和OsPIN5b表达上调,而OsPIN5a表达受到抑制。幼苗期的表型分析表明,突变体的株高显著低于野生型,不定根数显著少于野生型,但根长没有显著变化。NAA处理下,植株的生长受到抑制,ospin9突变体的不定根数仍少于野生型,但差异已不显著。【结论】利用CRISPR/Cas9技术对水稻生长素输出载体蛋白OsPIN9进行定向编辑,可获得无转基因成分的基因编辑植株,OsPIN9的突变影响其他OsPINs的表达,ospin9突变体的地上部和地下部的发育都受到抑制,NAA处理能部分恢复突变体不定根的发育。
吴世洋,杨晓祎,张艳雯,侯典云,胥华伟. 利用CRISPR/Cas9基因编辑技术构建水稻ospin9突变体[J]. 中国农业科学, 2021, 54(18): 3805-3817.
WU ShiYang,YANG XiaoYi,ZHANG YanWen,HOU DianYun,XU HuaWei. Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology[J]. Scientia Agricultura Sinica, 2021, 54(18): 3805-3817.
表1
引物及序列"
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Usage |
---|---|---|
PIN9-CRISPR-F | TGTGTTTCTCCAACGAGCAGTGCGC | CRISPR/Cas9载体构建 CRISPR/Cas9 vector construction |
PIN9-CRISPR-R | AAACGCGCACTGCTCGTTGGAGAA | |
M13-F | GTTGTAAAACGACGGCCAGTGCC | 筛选阳性克隆 Screening for positive clones |
HPT-F | CTGAACTCACCGCGACGTCTGTC | 筛选阳性植株 Screening for positive transgenic plants |
HPT-R | TAGCGCGTCTGCTGCTCCATACA | |
PIN9-Assay-F | CGACCTGGCTTACGAACGAA | 扩增OsPIN9基因组片段 Amplification of OsPIN9 genome fragment |
PIN9-Assay-R | CCATGTCGAAGATGAGCACC | |
PIN1a-qF | CCTGAAATCCATCTCCATCCTC | OsPIN1a表达分析 Expression analysis of OsPIN1a |
PIN1a-qR | AACGTCGCCACCTTGTT | |
PIN1b-qF | GAATCGTGCCCTTTGTGTTTG | OsPIN1b表达分析 Expression analysis of OsPIN1b |
PIN1b-qR | TGTAGTAGACGAGGGTGATAGG | |
PIN1c-qF | GAGCAATCAGCATCCCGAATA | OsPIN1c表达分析 Expression analysis of OsPIN1c |
PIN1c-qR | GAGCAATCAGCATCCCGAATA | |
PIN2-qF | CGTCTCCTTCAGGTGGAATATC | OsPIN2表达分析 Expression analysis of OsPIN2 |
PIN2-qR | AGAGCCATGAACAAGCCTAAG | |
PIN5a-qF | CCCTACCTCAATCCATCACATC | OsPIN5a表达分析 Expression analysis of OsPIN5a |
PIN5a-qR | GTAGGGAGACAAGCATTCCAA | |
PIN5b-qF | GCAAAGGAGTATGGGCTTCA | OsPIN5b表达分析 Expression analysis of OsPIN5b |
PIN5b-qR | GCAATCAGAATCGGCAGAGA | |
PIN9-qF | GAGGACTCTCTGTTCACCATTC | OsPIN9表达分析 Expression analysis of OsPIN9 |
PIN9-qR | GAGAACGACGCTATCTTGTATCC | |
OsACTIN1-qF | CTTCATAGGAATGGAAGCTGCG | qRT-PCR内参基因 Internal control for qRT-PCR |
OsACTIN1-qF | CACCTTGATCTTCATGCTGCTA |
[1] |
KARKI S, RIZAL G, QUICK W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice, 2013, 6:28.
doi: 10.1186/1939-8433-6-28 |
[2] |
FRIML J, VIETEN A, SAUER M, WEIJERS D, SCHWARZ H, HAMANN T, OFFRINGA R, JURGENS G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, 426(6963): 147-153.
doi: 10.1038/nature02085 |
[3] |
PETRASEK J, MRAVEC J, BOUCHARD R, BLAKESLEE J J, ABAS M, SEIFERTOVA D, WISNIEWSKA J, TADELE Z, KUBES M, COVANOVA M, DHONUKSHE P, SKUPA P, BENKOVA E, PERRY L, KRECEK P, LEE O R, FINK G R, GEISLER M, MURPHY A S, LUSCHNIG C, ZAZIMALOVA E, FRIML J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006, 312(5775): 914-918.
doi: 10.1126/science.1123542 |
[4] |
TUSKAN G A, DIFAZIO S, JANSSON S, BOHLMANN J, GRIGORIEV I, HELLSTEN U, PUTNAM N, RALPH S, ROMBAUTS S, SALAMOV A, SCHEIN J, STERCK L, AERTS A, BHALERAO R R, BHALERAO R P, BLAUDEZ D, BOERJAN W, BRUN A, BRUNNER A, BUSOV V, CAMPBELL M, CARLSON J, CHALOT M, CHAPMAN J, CHEN G L, COOPER D, COUTINHO P M, COUTURIER J, COVERT S, CRONK Q, CUNNINGHAM R, DAVIS J, DEGROEVE S, DEJARDIN A, DEPAMPHILIS C, DETTER J, DIRKS B, DUBCHAK I, DUPLESSIS S, EHLTING J, ELLIS B, GENDLER K, GOODSTEIN D, GRIBSKOV M, GRIMWOOD J, GROOVER A, GUNTER L, HAMBERGER B, HEINZE B, HELARIUTTA Y, HENRISSAT B, HOLLIGAN D, HOLT R, HUANG W, ISLAM-FARIDI N, JONES S, JONES-RHOADES M, JORGENSEN R, JOSHI C, KANGASJARVI J, KARLSSON J, KELLEHER C, KIRKPATRICK R, KIRST M, KOHLER A, KALLURI U, LARIMER F, LEEBENS-MACK J, LEPLE J C, LOCASCIO P, LOU Y, LUCAS S, MARTIN F, MONTANINI B, NAPOLI C, NELSON D R, NELSON C, NIEMINEN K, NILSSON O, PEREDA V, PETER G, PHILIPPE R, PILATE G, POLIAKOV A, RAZUMOVSKAYA J, RICHARDSON P, RINALDI C, RITLAND K, ROUZE P, RYABOY D, SCHMUTZ J, SCHRADER J, SEGERMAN B, SHIN H, SIDDIQUI A, STERKY F, TERRY A, TSAI C J, UBERBACHER E, UNNEBERG P, VAHALA J, WALL K, WESSLER S, YANG G, YIN T, DOUGLAS C, MARRA M, SANDBERG G, VAN DE PEER Y, ROKHSAR D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604.
doi: 10.1126/science.1128691 |
[5] |
BENJAMINS R, SCHERES B. Auxin: the looping star in plant development. Annual Review of Plant Biology, 2008, 59:443-465.
doi: 10.1146/annurev.arplant.58.032806.103805 |
[6] | DUBROVSKY J G, SAUER M, NAPSUCIALY-MENDIVIL S, IVANCHENKO M G, FRIML J, SHISHKOVA S, CELENZA J, BENKOVA E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(25): 8790-8794. |
[7] |
MRAVEC J, SKUPA P, BAILLY A, HOYEROVA K, KRECEK P, BIELACH A, PETRASEK J, ZHANG J, GAYKOVA V, STIERHOF Y D, DOBREV P I, SCHWARZEROVA K, ROLCIK J, SEIFERTOVA D, LUSCHNIG C, BENKOVA E, ZAZIMALOVA E, GEISLER M, FRIML J. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009, 459(7250): 1136-1140.
doi: 10.1038/nature08066 |
[8] | HAGA K, SAKAI T. Differential roles of auxin efflux carrier PIN proteins in hypocotyl phototropism of etiolated Arabidopsis seedlings depend on the direction of light stimulus. Plant Signalling & Behavior, 2013, 8(1): e22556. |
[9] | ZHANG K X, XU H H, YUAN T T, ZHANG L, LU Y T. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. The Plant Journal, 2013, 76(2): 308-321. |
[10] | CHEN R, HILSON P, SEDBROOK J, ROSEN E, CASPAR T, MASSON P H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 15112-15117. |
[11] | KLEINE-VEHN J, LEITNER J, ZWIEWKA M, SAUER M, ABAS L, LUSCHNIG C, FRIML J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17812-17817. |
[12] |
RAHMAN A, TAKAHASHI M, SHIBASAKI K, WU S, INABA T, TSURUMI S, BASKIN T I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. The Plant Cell, 2010, 22(6): 1762-1776.
doi: 10.1105/tpc.110.075317 |
[65] |
SINGH P K, INDOLIYA Y, CHAUHAN A S, SINGH S P, SINGH A P, DWIVEDI S, TRIPATHI R D, CHAKRABARTY D. Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Scientific Reports, 2017, 7:3592.
doi: 10.1038/s41598-017-03923-2 |
[13] |
RAKUSOVA H, GALLEGO-BARTOLOME J, VANSTRAELEN M, ROBERT H S, ALABADI D, BLAZQUEZ M A, BENKOVA E, FRIML J. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal, 2011, 67(5): 817-826.
doi: 10.1111/j.1365-313X.2011.04636.x |
[14] | LEITNER J, RETZER K, KORBEI B, LUSCHNIG C. Dynamics in PIN2 auxin carrier ubiquitylation in gravity-responding Arabidopsis roots. Plant Signaling & Behavior, 2012, 7(10): 1271-1273. |
[15] |
YANG Y, HAMMES U Z, TAYLOR C G, SCHACHTMAN D P, NIELSEN E. High-affinity auxin transport by the AUX1 influx carrier protein. Current Biology, 2006, 16(11): 1123-1127.
doi: 10.1016/j.cub.2006.04.029 |
[16] | NOH B, MURPHY A S, SPALDING E P. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. The Plant Cell, 2001, 13(11): 2441-2454. |
[17] |
GEISLER M, MURPHY A S. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Letters, 2006, 580(4): 1094-1102.
doi: 10.1016/j.febslet.2005.11.054 |
[18] |
WISNIEWSKA J, XU J, SEIFERTOVA D, BREWER P B, RUZICKA K, BLILOU I, ROUQUIE D, BENKOVA E, SCHERES B, FRIML J. Polar PIN localization directs auxin flow in plants. Science, 2006, 312(5775): 883.
doi: 10.1126/science.1121356 |
[19] |
GRIENEISEN V A, XU J, MAREE A F, HOGEWEG P, SCHERES B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 2007, 449(7165): 1008-1013.
doi: 10.1038/nature06215 |
[20] |
WANG J, HU H, WANG G, LI J, CHEN J, WU P. Expression of PIN genes in rice (Oryza sativa L.): Tissue specificity and regulation by hormones. Molecular Plant, 2009, 2(4): 823-831.
doi: 10.1093/mp/ssp023 |
[21] |
MIYASHITA Y, TAKASUGI T, ITO Y. Identification and expression analysis of PIN genes in rice. Plant Science, 2010, 178(5): 424-428.
doi: 10.1016/j.plantsci.2010.02.018 |
[22] |
KRECEK P, SKUPA P, LIBUS J, NARAMOTO S, TEJOS R, FRIML J, ZAZIMALOVA E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology, 2009, 10(12): 249.
doi: 10.1186/gb-2009-10-12-249 |
[23] |
ADAMOWSKI M, FRIML J. PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell, 2015, 27(1): 20-32.
doi: 10.1105/tpc.114.134874 |
[24] |
DAL BOSCO C, DOVZHENKO A, LIU X, WOERNER N, RENSCH T, EISMANN M, EIMER S, HEGERMANN J, PAPONOV I A, RUPERTI B, HEBERLE-BORS E, TOURAEV A, COHEN J D, PALME K. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. The Plant Journal, 2012, 71(5): 860-870.
doi: 10.1111/tpj.2012.71.issue-5 |
[25] |
DING Z, WANG B, MORENO I, DUPLAKOVA N, SIMON S, CARRARO N, REEMMER J, PENCIK A, CHEN X, TEJOS R, SKUPA P, POLLMANN S, MRAVEC J, PETRASEK J, ZAZIMALOVA E, HONYS D, ROLCIK J, MURPHY A, ORELLANA A, GEISLER M, FRIML J. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 2012, 3:941.
doi: 10.1038/ncomms1941 |
[26] |
BARBEZ E, KUBES M, ROLCIK J, BEZIAT C, PENCIK A, WANG B, ROSQUETE M R, ZHU J, DOBREV P I, LEE Y, ZAZIMALOVA E, PETRASEK J, GEISLER M, FRIML J, KLEINE-VEHN J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012, 485(7396): 119-122.
doi: 10.1038/nature11001 |
[27] | FERARU E, VOSOLSOBE S, FERARU M I, PETRASEK J, KLEINE-VEHN J. Evolution and structural diversification of PILS putative auxin carriers in plants. Frontiers in Plant Science, 2012, 3:227. |
[28] |
ABDOLLAHI S N, RUZICKA K. ER-localized PIN carriers: Regulators of intracellular auxin homeostasis. Plants, 2020, 9(11): 1527.
doi: 10.3390/plants9111527 |
[29] |
WANG Y, CHAI C, VALLIYODAN B, MAUPIN C, ANNEN B, NGUYEN H T. Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean (Glycine max). BMC Genomics, 2015, 16:951.
doi: 10.1186/s12864-015-2149-1 |
[30] | ZHANG Y, HE P, YANG Z, HUANG G, WANG L, PANG C, XIAO H, ZHAO P, YU J, XIAO G. A genome-scale analysis of the PIN gene family reveals its functions in cotton fiber development. Frontiers in Plant Science, 2017, 8:461. |
[31] |
LI Y, ZHU J, WU L, SHAO Y, WU Y, MAO C. Functional divergence of PIN1 paralogous genes in rice. Plant and Cell Physiology, 2019, 60(12): 2720-2732.
doi: 10.1093/pcp/pcz159 |
[32] |
CHEN Y, FAN X, SONG W, ZHANG Y, XU G. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal, 2012, 10(2): 139-149.
doi: 10.1111/pbi.2011.10.issue-2 |
[33] |
WANG L, GUO M, LI Y, RUAN W, MO X, WU Z, STURROCK C J, YU H, LU C, PENG J, MAO C. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Journal of Experimental Botany, 2018, 69(3): 385-397.
doi: 10.1093/jxb/erx427 |
[34] |
INAHASHI H, SHELLEY I J, YAMAUCHI T, NISHIUCHI S, TAKAHASHI NOSAKA M, MATSUNAMI M, OGAWA A, NODA Y, INUKAI Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiologia Plantarum, 2018, 164(2): 216-225.
doi: 10.1111/ppl.2018.164.issue-2 |
[35] |
WU D, SHEN H, YOKAWA K, BALUSKA F. Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. Journal of Experimental Botany, 2014, 65(18): 5305-5315.
doi: 10.1093/jxb/eru292 |
[36] |
WU D, SHEN H, YOKAWA K, BALUŠKA F. Overexpressing OsPIN2 enhances aluminium internalization by elevating vesicular trafficking in rice root apex. Journal of Experimental Botany, 2015, 66(21): 6791-6801.
doi: 10.1093/jxb/erv385 |
[37] |
LU G, CONEVA V, CASARETTO J A, YING S, MAHMOOD K, LIU F, NAMBARA E, BI Y M, ROTHSTEIN S J. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal, 2015, 83(5): 913-925.
doi: 10.1111/tpj.2015.83.issue-5 |
[38] |
ZHANG Q, LI J, ZHANG W, YAN S, WANG R, ZHAO J, LI Y, QI Z, SUN Z, ZHU Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. The Plant Journal, 2012, 72(5): 805-816.
doi: 10.1111/tpj.2012.72.issue-5 |
[39] |
HOU M M, LUO F F, WU D X, ZHANG X H, LOU M M, SHEN D F, YAN M, MAO C Z, FAN X R, XU G H, ZHANG Y L. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytologist, 2021, 229:935-949.
doi: 10.1111/nph.v229.2 |
[40] |
HSIEH P H, KAN C C, WU H Y, YANG H C, HSIEH M H. Early molecular events associated with nitrogen deficiency in rice seedling roots. Scientific Reports, 2018, 8(1): 12207.
doi: 10.1038/s41598-018-30632-1 |
[41] | 祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国农业科学, 2020, 53(8): 1501-1509. |
QI Y B, ZHANG L X, WANG L Y, SONG J, WANG J J. CRISPR/Cas9 targeted editing for the fragrant gene Badh2 in rice. Scientia Agricultura Sinica, 2020, 53(8): 1501-1509. (in Chinese) | |
[42] | 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报, 2019, 40(5): 38-49. |
LIU Y G, LI G S, ZHANG Y L, CHEN L T. Current advances on CRISPR/Cas genome editing technologies in plants. Journal of South China Agricultural University, 2019, 40(5): 38-49. (in Chinese) | |
[43] |
LIU W Z, XIE X R, MA X L, LI J, CHEN J H, LIU Y G. DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant, 2015, 8(9): 1431-1433.
doi: 10.1016/j.molp.2015.05.009 |
[44] |
MA X L, CHEN L T, ZHU Q L, CHEN Y L, LIU Y G. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Molecular Plant, 2015, 8(8): 1285-1287.
doi: 10.1016/j.molp.2015.02.012 |
[45] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054 |
[46] |
WATERHOUSE A M, PROCTER J B, MARTIN D M A, CLAMP M, BARTON G J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, 25(9): 1189-1191.
doi: 10.1093/bioinformatics/btp033 |
[47] |
KROGH A, LARSSON B, VON HEIJNE G, SONNHAMMER E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 2001, 305(3): 567-580.
doi: 10.1006/jmbi.2000.4315 |
[48] |
MADEIRA F, PARK Y M, LEE J, BUSO N, GUR T, MADHUSOODANAN N, BASUTKAR P, TIVEY A, POTTER S C, FINN R D, LOPEZ R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 2019, 47(W1): W636-W641.
doi: 10.1093/nar/gkz268 |
[49] | YOSHIDA S, FORNO D A, COCK J H, GOMEZ K A. Laboratory Manual for Physiological Studies of Rice. Manila: International Rice Research Institute, 1976. |
[50] |
BENNETT T, BROCKINGTON S F, ROTHFELS C, GRAHAM S W, STEVENSON D, KUTCHAN T, ROLF M, THOMAS P, WONG G K, LEYSER O, GLOVER B J, HARRISON C J. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Molecular Biology and Evolution, 2014, 31(8): 2042-2060.
doi: 10.1093/molbev/msu147 |
[51] |
MA X L, ZHANG Q Y, ZHU Q L, LIU W, CHEN Y, QIU R, WANG B, YANG Z F, LI H Y, LIN Y Y, XIE Y Y, SHEN R X, CHEN S F, WANG Z, CHEN Y L, GUO J X, CHEN L T, ZHAO X C, DONG Z C, LIU Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
doi: 10.1016/j.molp.2015.04.007 |
[52] |
WANG M G, MAO Y F, LU Y M, TAO X P, ZHU J K. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Molecular Plant, 2017, 10(7): 1011-1013.
doi: 10.1016/j.molp.2017.03.001 |
[53] |
ZHANG Y, LIANG Z, ZONG Y, WANG Y P, LIU J X, CHEN K L, QIU J L, GAO C X. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7(1): 12617-12617.
doi: 10.1038/ncomms12617 |
[54] |
LIANG Z, CHEN K L, LI T D, ZHANG Y, WANG Y P, ZHAO Q, LIU J X, ZHANG H W, LIU C M, RAN Y D, GAO C X. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8:14261.
doi: 10.1038/ncomms14261 |
[55] |
陈日荣, 周延彪, 王黛君, 赵新辉, 唐晓丹, 许世冲, 唐倩莹, 符星学, 王凯, 刘选明, 杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5. 作物学报, 2020, 46(8): 1157-1165.
doi: 10.3724/SP.J.1006.2020.92059 |
CHEN R R, ZHOU Y B, WANG D J, ZHAO X H, TANG X D, XU S C, TANG Q Y, FU X X, WANG K, LIU X M, YANG Y Z. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice. Acta Agronomica Sinica, 2020, 46(8): 1157-1165. (in Chinese)
doi: 10.3724/SP.J.1006.2020.92059 |
|
[56] |
黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建. 作物学报, 2018, 44(6): 844-851.
doi: 10.3724/SP.J.1006.2018.00844 |
HUANG Z M, ZHOU Y B, TANG X D, ZHAO X H, ZHOU Z W, FU X X, WANG K, SHI J W, LI Y F, FU C J, YANG Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology. Acta Agronomica Sinica, 2018, 44(6): 844-851. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00844 |
|
[57] | 王美娜, 彭静静, 王凯婕, 安文静, 刘亚菲, 李珂嘉, 梁卫红. 利用CRISPR/Cas9技术编辑水稻ROP基因OsRac5. 中国生物化学与分子生物学报, 2018, 34(12): 1350-1357. |
WANG M N, PENG J J, WANG K J, AN W J, LIU Y F, LI K J, LIANG W H. Editing ROP gene OsRac5 of rice by CRISPR/Cas9 technique. Chinese Journal of Biochemistry and Molecular Biology, 2018, 34(12): 1350-1357. (in Chinese) | |
[58] | 徐鹏, 王宏, 涂燃冉, 刘群恩, 吴玮勋, 傅秀民, 曹立勇, 沈希宏. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性. 中国水稻科学, 2019, 33(4): 313-322. |
XU P, WANG H, TU R R, LIU Q E, WU W X, FU X M, CAO L Y, SHEN X H. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system. Chinese Journal of Rice Science, 2019, 33(4): 313-322. (in Chinese) | |
[59] | 龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻. 中国水稻科学, 2019, 33(5): 407-420. |
LONG Q Z, HUANG Y L, TANG X Y, WANG H M, LU M, YUAN L F, WAN J L. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9. Chinese Journal of Rice Science, 2019, 33(5): 407-420. (in Chinese) | |
[60] | 徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 2020, 34(5): 406-412. |
XU S B, ZHENG H L, LIU L F, BU Q Y, LI X F, ZOU D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system. Chinese Journal of Rice Science, 2020, 34(5): 406-412. (in Chinese) | |
[61] | 周天顺, 余东, 刘玲, 欧阳宁, 袁贵龙, 段美娟, 袁定阳. 利用CRISPR/Cas9技术编辑AFP1基因提高水稻耐逆性. 中国水稻科学, 2021, 35(1): 11-18. |
ZHOU T S, YU D, LIU L, OU Y N, YUAN G L, DUAN M J, YUAN D Y. CRISPR/Cas9-mediated editing of AFP1 improves rice stress tolerance. Chinese Journal of Rice Science, 2021, 35(1): 11-18. (in Chinese) | |
[62] |
XU M, ZHU L, SHOU H X, WU P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology, 2005, 46(10): 1674-1681.
doi: 10.1093/pcp/pci183 |
[63] |
WANG T, LI C X, WU Z H, JIA Y C, WANG H, SUN S Y, MAO C Z, WANG X L. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation. Frontiers in Plant Science, 2017, 8:1121.
doi: 10.3389/fpls.2017.01121 |
[64] |
ZHANG X W, LI J P, LIU A L, ZOU J, ZHOU X Y, XIANG J H, RERKSIRI W, PENG Y, XIONG X Y, CHEN X B. Expression profile in rice panicle: Insights into heat response mechanism at reproductive stage. PLoS ONE, 2012, 7(11): e49652.
doi: 10.1371/journal.pone.0049652 |
[1] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
[2] | 李儒香, 周恺, 王大川, 李巧龙, 向奥妮, 李璐, 李苗苗, 向思茜, 凌英华, 何光华, 赵芳明. 水稻CSSL-Z481代换片段携带的穗部性状QTL分析及次级代换系培育[J]. 中国农业科学, 2023, 56(7): 1228-1247. |
[3] | 赵梓钧, 吴如会, 王硕, 张君, 游静, 段倩楠, 唐俊, 张新芳, 韦秘, 刘金艳, 李云峰, 何光华, 张婷. 水稻PDL2的突变导致小穗外稃退化[J]. 中国农业科学, 2023, 56(7): 1248-1259. |
[4] | 朱洪慧, 李映姿, 高远卓, 林泓, 王成洋, 晏紫仪, 彭瀚平, 李田野, 熊茂, 李云峰. 水稻短宽粒基因SWG1的图位克隆[J]. 中国农业科学, 2023, 56(7): 1260-1274. |
[5] | 张绩, 周上铃, 何发, 刘莉莎, 张玉娟, 何晋宇, 杜晓秋. 水稻α-淀粉酶基因的表达模式与颖花开放的关系[J]. 中国农业科学, 2023, 56(7): 1275-1282. |
[6] | 李浩, 陈金, 王洪亮, 柳开楼, 韩天富, 都江雪, 申哲, 刘立生, 黄晶, 张会民. 红壤性水稻土有机无机复合体中碳氮特征对长期施肥的响应[J]. 中国农业科学, 2023, 56(7): 1333-1343. |
[7] | 贺江, 丁颖, 娄向弟, 姬东玲, 张向向, 王永慧, 张伟杨, 王志琴, 王伟露, 杨建昌. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6): 1045-1060. |
[8] | 谢军, 尹学伟, 魏灵, 王子芳, 李清虎, 张晓春, 鲁远源, 王秋月, 高明. 垄作直播控制灌溉对水稻产量和温室气体排放的影响[J]. 中国农业科学, 2023, 56(4): 697-710. |
[9] | 刘刚, 夏快飞, 吴艳, 张明永, 张再君, 杨金松, 邱东峰. 水稻耐热新种质R203的创制与应用[J]. 中国农业科学, 2023, 56(3): 405-415. |
[10] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[11] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[12] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[13] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[14] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[15] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
|