中国农业科学 ›› 2021, Vol. 54 ›› Issue (18): 3789-3804.doi: 10.3864/j.issn.0578-1752.2021.18.001
张兴平1(),钱前2,张嘉楠3,邓兴旺1,万建民2,徐云碧2,4(
)
收稿日期:
2021-04-06
接受日期:
2021-05-20
出版日期:
2021-09-16
发布日期:
2021-09-26
联系方式:
张兴平,E-mail: xingping.zhang@pku-iaas.edu.cn。
基金资助:
ZHANG Xingping1(),QIAN Qian2,ZHANG JiaNan3,DENG XingWang1,WAN JianMin2,XU Yunbi2,4(
)
Received:
2021-04-06
Accepted:
2021-05-20
Published:
2021-09-16
Online:
2021-09-26
摘要:
异地加代可以经济有效地加快育种进程。长期以来,海南省作为中国最南端省份,只在冬季用来进行育种材料的扩繁和加代,其周年可以种植农作物的自然气候和环境并未得到充分有效地利用。分子标记辅助育种与其他现代育种技术相融合,将助推南繁种业从单一的繁殖加代向资源引进和评价、育种选择、纯度检测、种质交流和产权保护等在内的全产业链模式转变,实现从海南冬繁到周年育种的转变,将海南的南繁地理和生态优势转化为南繁与育种相整合的全产业链优势,加快育种进展、提高育种效率,促进种业发展。本文讨论了海南地理生态优势与南繁种业现状,南繁种业转型升级的必要性和可能性,以及所面临的挑战和机遇。实现南繁种业的转型升级有赖于异地选择观念的转变、国家相关政策的支持、分子育种平台的支撑、生物安全防控、品种保护制度的建立和完善、资源共享和交流机制的形成。数量和群体遗传、基因型和环境互作、分子设计和大数据构成了南繁种业转型升级所需的育种理论。分子设计包括宏观水平的个体设计、群体设计和物种设计,微观水平的基因设计、代谢设计和网络设计。高通量精准表现型鉴定、环境型鉴定、信息处理和网络技术、决策支撑系统等是南繁种业转型升级所需的育种平台。作为分子育种的核心支撑,现已发展了基于靶向测序-液相芯片的基因型检测(genotyping by target sequencing and liquid chip,GBTS-LC)技术,通过GenoPlexs可以实现高达5 000对标记引物高度均一的多重PCR靶向扩增,而基于液态探针捕获的GenoBaits,可以获取高达40K个目标位点(每个位点包含多个SNP)。该技术具有平台广适性、标记灵活性、检测高效性、信息可加性、支撑便捷性、应用广普性,已成为分子育种中取代固相芯片的重要分子检测技术。要实现“海南育种,全国测试”,需要构建包括高效育种设施、快速育种、转基因和基因编辑技术、双单倍体育种技术、全基因组选择等在内的综合育种体系。为此,要倡导资源共享的开源育种模式,建设横跨动植物的共性方法、技术和平台,开展资源引进、监测和评价,构建种质资源指纹图谱,强化品种权保护、种子质量控制和纯度检测。希望借此推进有关南繁种业转型升级的公众讨论和政府决策,从而推进整个种业的科技进步和现代化。
张兴平,钱前,张嘉楠,邓兴旺,万建民,徐云碧. 分子植物育种助推南繁种业转型升级[J]. 中国农业科学, 2021, 54(18): 3789-3804.
ZHANG Xingping,QIAN Qian,ZHANG JiaNan,DENG XingWang,WAN JianMin,XU Yunbi. Transforming and Upgrading Off-Season Breeding in Hainan Through Molecular Plant Breeding[J]. Scientia Agricultura Sinica, 2021, 54(18): 3789-3804.
表1
南繁种业转型升级所需条件"
领域 Fields | 所需改变 Required changes |
---|---|
观念转变 Mind-set changes | 异地也可以进行评价、选择和育种 Evaluation, selection and breeding can be largely performed at or replaced by, non-target environments |
政策支持 Policy support | 降低租地和劳动力成本;开辟资源引进和交流绿色通道;确定南繁育种保护区 Reducing land and lab costs; providing a special channel for germplasm introduction/exchange; defining the core winter nursery reserved for breeding use |
平台建设 Platform development | 育种平台:分子检测、表型鉴定、快速育种、转基因和基因编辑;育种实验站建设:交通、灌溉、机械化;后勤服务体系 Breeding platforms for molecular diagnosis, phenotyping, speeding breeding, transgene and gene editing; breeding stations with well-established transportation, irrigation and mechanization systems; logistic service |
生物安全 Biosafety containment | 生物安全防控法治化建设;检疫性生物分子检测 Regulations and legal construction for biosafety protection; molecular diagnosis and detection of quarantine organisms |
品种权保护 Variety right protection | 实施与国际接轨的植物品种保护制度 Implementing plant variety protection system that matches with international regulations |
合作交流 Collaboration and exchange | 种质资源和信息资源的共享和交流;为东南亚育种 Sharing and exchanging germplasm and information; breeding for Southeast Asian countries |
表2
微观和宏观水平的分子设计育种(根据文献[30]修改)"
水平 Scale | 设计 Design | 工作内容 Design contents |
---|---|---|
微观水平Micro-scale | 基因设计 Gene design | 基因定点敲除、诱变与编辑、RNA干扰、转基因、分子标记辅助选择 单基因:最佳等位基因 多基因:最佳结合体(单倍型)和互作类型 Site-directed gene knockout, mutation, and gene editing; RNA interference, transgenes, marker-assisted selection Single genes: Best alleles Multiple genes: Best combinations (haplotypes) and interactions |
代谢设计 Metabolism design | 代谢途径的替换、修饰和改良。实例:C4水稻,高光效小麦 Substitution, modification and improvement of metabolic pathways. For example, rice with C4 pathway and wheat with high-photosynthetic efficiency | |
网络设计 Network design | 网络调控因子、网络结构、网络节点和边界等的设计。实例:直播稻与旱稻 Design of network regulators, network structure, network nodes and borders, etc.. For example, direct-seeding and drought-resistant rice | |
宏观水平Macro-scale | 个体设计 Individual design | 形态、产物分配、耐逆性、个体间相互作用、性状间互作和协调 Morphology, assimilate distribution, stress tolerance, individual interaction, trait interaction and complementation |
群体设计 Population design | 结构优化、生态稳定、光合效率、源库协调和补偿 Structure optimization, ecological stabilization, photosynthetic efficiency, source-sink coordination and compensation | |
物种设计 Species design | 结合不同物种的优良性状,适合不同环境和生态的新型农作物: 环境友好型、资源节约型、产物多样型、用途可塑型 Integration of favorable traits from different species and adaptation to different ecological environments: environment-friendly, resource-saving, product-diversified, and usage-flexible |
[1] |
HICKEY L T, HAFEEZ A N, ROBINSON H, JACKSON S A, LEAL-BERTIOLI S C M, TESTER M, GAO X, GODWIN I D, HAYES B J, WULFF B B H. Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37:744-754.
doi: 10.1038/s41587-019-0152-9 |
[2] | 房裕东, 韩天富. 作物快速育种技术研究进展. 作物杂志, 2019(2): 1-7. |
FANG Y D, HAN T F. Research progress in speed breeding of crops. Crops, 2019(2): 1-7. (in Chinese) | |
[3] | RAJARAM S, VAN GINKEL M. Mexico, 50 years of international wheat breeding//BONJEAN A P, ANGUS W J, (Eds). The World Wheat Book: A History of Wheat Breeding. Paris: Laroisier Press, 2001: 579-608. |
[4] |
BORLAUG N E. Sixty-two years of fighting hunger: Personal recollections. Euphytica, 2007, 157:287-297.
doi: 10.1007/s10681-007-9480-9 |
[5] | 吴绍骙. 异地培育玉米自交系在生产上利用可能性的研究. 河南农学院学报, 1961(1): 16-40. |
WU S K. Study on the commercialization potential of the maize inbred lines developed at a non-target environment. Journal of Henan Agricultural College, 1961(1): 16-40. (in Chinese) | |
[6] | KOTHARI N, HAGUE S S, FRELICHOWSKI J, NICHOLS R L, JONES D C. Breeding and genetics: Utilization of cotton germplasm in the winter nursery at Tecoman, Mexico for plant breeding training and research. Journal of Cotton Science, 2011, 15:271-273. |
[7] | 徐云碧. 分子植物育种助推南繁种业转型升级. 三亚: 南繁与现代育种国际论坛, 2019. |
XU Y. Transformation and upgrading of Hainan off-season breeding industry through molecular plant breeding. Sanya: International Forum on Hainan Off-season & Modern Breeding, 2019. (in Chinese) | |
[8] | 海南省南繁管理局. 南繁简介及历程. 海南: 海南省农业农村厅,http://agri.hainan.gov.cn/zgnf/. 2020-12-31[2021-05-19]. |
Hainan Winter Nursery Breeding Administration. Introduction and history of winter nursery breeding. Hainan: Hainan Department of Agriculture and Rural Affairs.http://agri.hainan.gov.cn/zgnf/. 2020-12-31 [2021-05-19]. (in Chinese) | |
[9] | 海南省南繁管理局. 水稻南繁科技成果. 海南: 海南省农业农村厅,http://agri.hainan.gov.cn/zgnf. 2020-12-31[2021-05-19]. |
Hainan Winter Nursery Breeding Administration. Scientific achievements in rice winter nursery breeding. Hainan: Hainan Department of Agriculture and Rural Affairs.http://agri.hainan.gov.cn/zgnf/. 2020-12-31[2021-05-19]. (in Chinese) | |
[10] | 罗江. 海南: 做好南繁文章打造中国“种业硅谷”, 北京: 新华网,http://www.xinhuanet.com/politics/2018-04/27/c_129860791.htm. 2018-04-07[2021-05-19]. |
LUO J. Hainan: Winter nursery breeding for development of seed industry Silico Valley. Beijing: XINHUANET,http://www.xinhuanet.com/politics/2018-04/27/c_129860791.htm. 2018-04-07[2021-05-19]. (in Chinese) | |
[11] | 徐云碧, 朱立煌. 分子数量遗传学. 北京: 中国农业出版社, 1994: 291. |
XU Y, ZHU L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994: 291. (in Chinese) | |
[12] | BERNARDO R. Breeding for Quantitative Traits in Plants. Woodbury, Minnesota: Stemma Press, 2002: 369. |
[13] | DUDLEY J W. Integrating molecular techniques into quantitative genetics and plant breeding//KANG M S. (ed). Quantitative Genetics, Genomics, and Plant Breeding. Wallingford, UK: CAB International Press, 2002: 69-83. |
[14] | XU Y. Molecular Plant Breeding, Wallingford, UK: CABI Press (UK), 2010: 734. |
[15] |
CROSSA J. From genotype × environment interaction to gene × environment interaction. Current Genomics, 2012, 13:225-244.
doi: 10.2174/138920212800543066 |
[16] |
COOPER M, MESSINA C D, PODLICH D, TOTIR L R, BAUMGARTEN A, HAUSMANN N J, WRIGHT D, GRAHAM G. Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop and Pasture Science, 2014, 65:311-336.
doi: 10.1071/CP14007 |
[17] |
XU Y. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 2016, 129:653-673.
doi: 10.1007/s00122-016-2691-5 |
[18] |
WATSON A, GHOSH S, WILLIAMS M J, CUDDY W S, SIMMONDS J, REY M D, HATTA M A M, HINCHLIFFE A, STEED A, REYNOLDS D, ADAMSKI N M, BREAKSPEARA, KOROLEV A, RAYNER T, DIXON L E, RIAZ A, MARTIN W, RYAN M, EDWARDS D, BATLEY J, RAMAN H, CARTER J, ROGERS C, DOMONEY C, MOORE G, HARWOOD W, NICHOLSON P, DIETERS M J, DELACY I H, ZHOU J, UAUY C, BODEN S A, PARK R F, WULFF B B H, HICKEY L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4:23-29.
doi: 10.1038/s41477-017-0083-8 |
[19] |
MCELROY D, BRETTELL R I S. Foreign gene expression in transgenic cereals. Trends in Biotechnology, 1994, 12:62-68.
doi: 10.1016/0167-7799(94)90102-3 |
[20] |
MACKELPRANG R, LEMAUX P G. Genetic engineering and editing of plants: An analysis of new and persisting questions. Annual Review of Plant Biology, 2020, 71:659-687.
doi: 10.1146/annurev-arplant-081519-035916 |
[21] |
CONG L, RAN F A, COX D, LIN S, BARRETTO R, HABIB N, HSU P D, WU X, JIANG W, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339:819-823.
doi: 10.1126/science.1231143 |
[22] |
ZHU H, LI C, GAO C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21:661-677.
doi: 10.1038/s41580-020-00288-9 |
[23] | 王向峰, 才卓. 中国种业科技创新的智能时代“玉米育种4.0”. 玉米科学, 2019, 27(1): 1-9. |
WANG X F, CAI Z. Era of maize breeding 4.0. Journal of Maize Sciences, 2019, 27(1): 1-9. (in Chinese) | |
[24] | 林章凛, 林敏. 微生物和植物抗逆元器件的合成生物学研究. 生物产业技术, 2013(4): 7-11. |
LIN Z L, LIN M. Study on synthetic biology of stress tolerance elements in microorganisms and plants. Biotechnology Industry, 2013(4): 7-11. (in Chinese) | |
[25] |
BROPHY J A, VOIGT C A. Principles of genetic circuit design. Nature Methods, 2014, 11:508-520.
doi: 10.1038/nmeth.2926 |
[26] |
PELEMAN J D, VAN DER VOORT J R. Breeding by design. Trends in Plant Science, 2003, 8:330-334.
doi: 10.1016/S1360-1385(03)00134-1 |
[27] | 钱前. 水稻基因设计育种. 北京: 科学出版社, 2007. |
QIAN Q. Rice Breeding by Gene Design. Beijing: Science Press, 2007. (in Chinese) | |
[28] |
王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民. 中国作物分子设计育种. 作物学报, 2011, 37(2): 191-201.
doi: 10.3724/SP.J.1006.2011.00191 |
WANG J K, LI H H, ZHANG X C, YIN C B, LI Y, MA Y Z, LI X H, QIU L J, WAN J M. Molecular design breeding in crops in China. Acta Agronomica Sinica, 2011, 37(2): 191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00191 |
|
[29] | 余泓, 王冰, 陈明江, 刘贵富, 李家洋. 水稻分子设计育种发展与展望. 生命科学, 2018, 30(10): 1032-1037. |
YU H, WANG B, CHEN M J, LIU G F, LI J Y. Research advance and perspective of rice breeding by molecular design. Chinese Bulletin of Life Sciences, 2018, 30(10): 1032-1037. (in Chinese) | |
[30] | XU Y. Molecular breeding driven by big data and artificial intelligence. Shenzhen: Presented at Session 21 Plant Omics, The 13th International Conference on Genomics, 2018. |
[31] | SOUTH P F, CAVANAGH A P, LIU H W, ORT D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363: eaat9077. |
[32] |
SHEN B R, WANG L M, LIN X L, YAO Z, XU H W, ZHU C H, TENG H Y, CUI L L, LIU E E, ZHANG J J, HE Z H, PENG X X. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Molecular Plant, 2019, 12:199-214.
doi: 10.1016/j.molp.2018.11.013 |
[33] |
WANG L M, SHEN B R, LI B D, ZHANG C L, LIN M, TONG P P, CUI L L, ZHANG Z S, PENG X X. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Molecular Plant, 2020, 13:1802-1815.
doi: 10.1016/j.molp.2020.10.007 |
[34] |
BOZSOKI Z, GYSEL K, SIMON B. HANSEN S B, LIRONI D, KRÖNAUER C, FENG F, DE JONG N, VINTHER M, KAMBLE M, THYGESEN M B, ENGHOLM E, KOFOED C, FORT S, SULLIVAN J T, RONSON C W, JENSEN K J, BLAISE M, OLDROYD G, STOUGAARD J, ANDERSEN K R, RADUTOIU S. Ligand- recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369:663-670.
doi: 10.1126/science.abb3377 |
[35] | 薛勇彪, 种康, 韩斌, 桂建芳, 王台, 傅向东, 何祖华, 储成才, 田志喜, 程祝宽, 林少扬. 开启中国设计育种新篇章——“分子模块设计育种创新体系”战略性先导科技专项进展. 中国科学院院刊, 2015, 30:393-402. |
XUE Y B, ZHONG K, HAN B, GUI J F, WANG T, FU X D, HE Z H, CHU C C, TIAN Z X, CHEN Z K, LIN S Y. New chapter of designer breeding in China: Update on strategic program of molecular module-based designer breeding systems. Bulletin of Chinese Academy of Sciences, 2015, 30:393-402. (in Chinese) | |
[36] |
WEI X, QIU J, YONG K, FAN J, ZHANG Q, HUA H, LIU J, WANG Q, OLSEN K M, HAN B, HUANG X. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 2021, 53:243-253.
doi: 10.1038/s41588-020-00769-9 |
[37] |
WANG R, JIANG G, FENG X, NAN J, ZHANG X, YUAN Q, LIN S. Updating the genome of the elite rice variety Kongyu131 to expand its ecological adaptation region. Frontiers in Plant Science, 2019, 10:288.
doi: 10.3389/fpls.2019.00288 |
[38] |
XU Y, LU Y, XIE C, GAO S, WAN J, PRASANNA B M. Whole- genome strategies for marker-assisted plant breeding. Molecular Breeding, 2012, 29:833-854.
doi: 10.1007/s11032-012-9699-6 |
[39] | XU Y. Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breeding Reviews, 2003, 23:73-174. |
[40] | 徐云碧. 2017分子植物育种理论、技术平台和应用. 北京: 分子植物育种大会组织委员会, 2017. |
XU Y. Molecular plant breeding: Theories, technical platforms and applications. Beijing: Organization Committee for China National Conference of Molecular Plant Breeding, 2017. (in Chinese) | |
[41] | 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53(15): 2983-3004. |
XU Y, YANG Q N, ZHENG H J, XU Y F, SANG Z Q, GUO Z F, PENG H, ZHANG C, LAN H F, WANG Y B, WU K S, TAO J J, ZHANG J N. Genotyping by target sequencing (GBTS) and its applications. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. (in Chinese) | |
[42] |
XU C, REN Y, JIAN Y, GUO Z, ZHANG Y, XIE C, FU J, WANG H, WANG G, XU Y, LI P, ZOU C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 2017, 37:20.
doi: 10.1007/s11032-017-0622-z |
[43] |
SUN C, DONG Z, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18:1354-1360.
doi: 10.1111/pbi.v18.6 |
[44] |
SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2013, 33:1-14.
doi: 10.1007/s11032-013-9917-x |
[45] |
ERTIRO B T, OGUGO V, WORKU M, DAS B, OLSEN M, LABUSCHAGNE M, SEMAGN K. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics, 2015, 16:908.
doi: 10.1186/s12864-015-2180-2 |
[46] | GUO Z, YANG Q, HUANG F, ZHENG H, SANG Z, XU Y, ZHANG C, WU K, AO J, PRASANNA B M, OLSEN M S, WANG Y, ZHANG J, XU Y. Development of high-resolution multiple-SNP arrays for genetics and molecular breeding through improved genotyping by target sequencing and liquid chip. Plant Communications, 2021, 2:100230. |
[47] |
GUO Z, WANG H, TAO J, REN Y, XU C, WU K, ZOU C, ZHANG J, XU Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019, 39:37.
doi: 10.1007/s11032-019-0940-4 |
[48] |
XU Y, LI P, ZOU C, LU Y, XIE C, ZHANG X, PRASANNA B M, OLSEN M S. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 2017, 68:2641-2666.
doi: 10.1093/jxb/erx135 |
[49] |
GAO S, MARTINEZ C, SKINNER D J, KRIVANEK A F, CROUCH J H, XU Y. Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Molecular Breeding, 2008, 22:477-494.
doi: 10.1007/s11032-008-9192-4 |
[50] | 周发松. 利用水稻基因组技术培育水稻多系品种. 长春: 分子植物育种大会组织委员会, 2019. |
ZHOU F S. Development of rice multiple lines using genomic techniques. Changchun: Organization Committee for China National Conference of Molecular Plant Breeding, 2019. (in Chinese) | |
[51] | XU Y, LIU X, FU J, WANG H, WANG J, HUANG C, PRASANNA B M, OLSEN M S, WANG G, ZHANG A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Communications, 2020, 1:100005. |
[52] |
SANTANTONIO N, ATANDA S A, BEYENE Y, VARSHNEY R V, OLSEN M, JONES E, ROORKIWAL M, GOWDA M, BHARADWAJ C, GAUR P M, ZHANG X, DREHER K, AYALA-HERNÁNDEZ C, CROSSA J, PÉREZ-RODRÍGUEZ P, RATHORE A, GAO S Y, MCCOUCH S, ROBBINS K R. Strategies for effective use of genomic information in crop breeding programs serving Africa and South Asia. Frontiers in Plant Science, 2020, 11:353.
doi: 10.3389/fpls.2020.00353 |
[1] | 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 2022, 55(4): 653-665. |
[2] | 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析[J]. 中国农业科学, 2022, 55(2): 233-247. |
[3] | 陈红霖, 田静, 朱振东, 张耀文, 陈巧敏, 周素梅, 王丽侠, 刘玉皎, 何玉华, 尹凤祥, 魏淑红, 程须珍. 中国食用豆产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 493-503. |
[4] | 王欣,李强,曹清河,马代夫. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 483-492. |
[5] | 李顺国,刘猛,刘斐,邹剑秋,陆晓春,刁现民. 中国高粱产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 471-482. |
[6] | 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 459-470. |
[7] | 常佳迎,刘树森,石洁,郭宁,张海剑,马红霞,杨春凤. 海南三亚和黄淮海地区玉米小斑病菌致病性及遗传多样性分析[J]. 中国农业科学, 2020, 53(6): 1154-1165. |
[8] | 戴思兰,洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 2016, 49(3): 529-542. |
[9] | 喻树迅,范术丽,王寒涛,魏恒玲,庞朝友. 中国棉花高产育种研究进展[J]. 中国农业科学, 2016, 49(18): 3465-3476. |
[10] | 许世卫,王东杰,李哲敏. 大数据推动农业现代化应用研究[J]. 中国农业科学, 2015, 48(17): 3429-3438. |
[11] | 盖钧镒,刘康,赵晋铭. 中国作物种业科学技术发展的评述[J]. 中国农业科学, 2015, 48(17): 3303-3315. |
[12] | 王磊, 刘丽军, 宋敏. 基于种业市场份额的中国种业国际竞争力分析[J]. 中国农业科学, 2014, 47(4): 796-805. |
[13] | 胡凝,姚克敏,袁潜华,贾士荣,何美丹,江晓东,徐立新,胡继超,裴新梧. 海南南繁区水稻基因飘流的最大阈值距离及其时空分布特征[J]. 中国农业科学, 2014, 47(23): 4551-4562. |
[14] | 喻修道,徐兆师,陈明,李连城,马有志 . 小麦转基因技术研究及其应用[J]. 中国农业科学, 2010, 43(8): 1539-1553 . |
[15] | 李 林,李 青,王立博,张祖新,李建生,严建兵 . 玉米和水稻全基因组控制重组频率QTL的遗传定位分析[J]. 中国农业科学, 2009, 42(7): 2262-2270 . |
|