中国农业科学 ›› 2021, Vol. 54 ›› Issue (18): 3818-3833.doi: 10.3864/j.issn.0578-1752.2021.18.003
收稿日期:
2021-01-11
接受日期:
2021-04-01
出版日期:
2021-09-16
发布日期:
2021-09-26
联系方式:
赵瑞,Tel:18813000311;E-mail: ruizhaoray@outlook.com。
基金资助:
ZHAO Rui(),ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia(
)
Received:
2021-01-11
Accepted:
2021-04-01
Published:
2021-09-16
Online:
2021-09-26
摘要:
【目的】建立小麦成株期氮效率评价方法,挖掘和筛选氮高效种质资源,为小麦氮效率的生理机制研究和氮高效品种的选育提供理论依据和材料基础。【方法】2018—2020年,以108份不同基因型小麦品种为材料,采用大田试验,设置4个氮肥处理水平(0、180、240和360 kg·hm-2),调查不同氮水平下小麦株高、穗长、旗叶长、旗叶宽、茎粗、可育小穗数、穗粒数、千粒重、粒长、粒宽和单穗产量11个农艺及产量性状,利用模糊隶属函数法、主成分分析法以及聚类分析法对小麦品种进行耐氮性评价和基因型差异分类。【结果】连续2年的数据结果显示,在低氮胁迫下,株高、穗长、旗叶长、旗叶宽、茎粗、可育小穗数、穗粒数和单穗产量8个性状均受到不同程度的抑制,其中,旗叶长对氮胁迫的敏感程度最大。主成分分析提取4个主成分,贡献率分别为39.766%、16.661%、9.361%和9.275%,累积贡献率达75.064%。以耐低氮性综合评价D值进行聚类分析,将供试小麦品种划分为强耐低氮型、耐低氮型、中间型、较敏感型和敏感型5类。筛选出耐低氮型小麦品种5份,温麦19、西农529、石4185、陇麦212和丰抗2,强耐低氮型小麦品种2份,中麦875和西农158。与低氮胁迫不同,高氮胁迫仅抑制茎粗、千粒重、粒长、粒宽和单穗产量5个性状,株高、穗长、旗叶长、旗叶宽、可育小穗数和穗粒数6个性状值随施氮量上升而增加。4个主成分的贡献率分别为31.348%、20.387%、12.452%和9.850%,累积贡献率达74.037%。依据耐高氮性综合评价D值,将供试小麦品种划分为耐高氮型、中间型、高氮较敏感型和高氮敏感型4类。鉴定出耐高氮型小麦品种9份,包括兰考矮早8、良星99、农大179、豫农9901、兰考926和郑农46等。基于籽粒产量和氮综合评价D值,将108份小麦品种划分为4种氮效率类型,双高效型(西农158和陇麦212等)、低氮高效型(西农585和石4185等)、高氮高效型(长丰1号和中种麦10号等)和双低效型(金丰7183和泛麦5号等)。【结论】供氮水平对小麦产量相关性状指标有显著影响,基于小麦种质间氮吸收与利用效率的差异,结合3种分析方法,可以准确评价小麦种质资源成株期氮效率状况。
赵瑞,张旭辉,张程炀,郭泾磊,汪妤,李红霞. 小麦种质资源成株期氮效率评价及筛选[J]. 中国农业科学, 2021, 54(18): 3818-3833.
ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage[J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
表1
不同氮水平下小麦成株期氮效率相关性状的差异"
年份 Year | 性状 Trait | N1 | N2 | N3 | N4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 Mean | 标准差 SD | 变异系数 CV (%) | 平均值 Mean | 标准差 SD | 变异系数 CV (%) | 平均值 Mean | 标准差 SD | 变异系数 CV (%) | 平均值 Mean | 标准差 SD | 变异系数 CV (%) | ||
2019 | 株高PH (cm) | 74.56 | 11.70 | 15.69 | 79.16 | 13.33 | 16.84 | 80.04 | 12.46 | 15.57 | 79.64 | 12.86 | 16.15 |
穗长SL (cm) | 8.48 | 1.11 | 13.10 | 8.93 | 1.18 | 13.21 | 9.30 | 1.16 | 12.51 | 9.39 | 1.29 | 13.70 | |
旗叶长FLL(cm) | 12.20 | 2.69 | 22.08 | 13.02 | 2.55 | 19.58 | 13.73 | 2.21 | 16.11 | 14.12 | 2.47 | 17.46 | |
旗叶宽FLW (cm) | 1.43 | 0.23 | 15.94 | 1.49 | 0.24 | 16.44 | 1.59 | 0.23 | 14.53 | 1.58 | 0.23 | 14.57 | |
茎粗SD (cm) | 3.62 | 0.40 | 10.93 | 3.60 | 0.40 | 11.04 | 3.86 | 0.35 | 9.12 | 3.68 | 0.33 | 9.04 | |
可育小穗数FSN (cm) | 17.96 | 2.13 | 11.85 | 18.02 | 1.83 | 10.16 | 18.32 | 1.68 | 9.19 | 18.32 | 1.76 | 9.60 | |
穗粒数GNPS | 43.70 | 7.98 | 18.26 | 44.08 | 7.23 | 16.41 | 46.96 | 7.74 | 16.48 | 45.07 | 7.96 | 17.65 | |
千粒重TKW(g) | 52.80 | 4.94 | 9.36 | 52.47 | 4.74 | 9.04 | 52.65 | 5.12 | 9.72 | 51.88 | 5.24 | 10.09 | |
粒长GL (cm) | 7.46 | 0.35 | 4.66 | 7.50 | 0.34 | 4.50 | 7.45 | 0.36 | 4.79 | 7.45 | 0.41 | 5.44 | |
粒宽GW (cm) | 3.94 | 0.16 | 4.09 | 3.91 | 0.16 | 3.97 | 3.90 | 0.16 | 4.21 | 3.87 | 0.15 | 3.86 | |
单穗产量GWPS (g) | 2.31 | 0.50 | 21.79 | 2.31 | 0.44 | 19.05 | 2.47 | 0.47 | 19.13 | 2.34 | 0.47 | 20.07 | |
2020 | 株高PH (cm) | 76.92 | 10.62 | 13.81 | 77.39 | 9.06 | 11.70 | 78.39 | 10.55 | 13.46 | 78.14 | 10.12 | 12.96 |
穗长SL (cm) | 8.41 | 1.14 | 13.49 | 8.83 | 0.92 | 10.46 | 8.89 | 0.94 | 10.59 | 9.13 | 1.00 | 10.95 | |
旗叶长FLL(cm) | 12.80 | 2.94 | 22.99 | 13.96 | 2.10 | 15.07 | 13.76 | 2.29 | 16.68 | 14.38 | 2.13 | 14.79 | |
旗叶宽FLW (cm) | 1.19 | 0.22 | 18.88 | 1.16 | 0.24 | 20.43 | 1.24 | 0.26 | 21.12 | 1.27 | 0.18 | 14.06 | |
茎粗SD (cm) | 3.59 | 0.51 | 14.15 | 3.90 | 0.41 | 10.54 | 3.82 | 0.49 | 12.83 | 3.66 | 0.34 | 9.25 | |
可育小穗数FSN (cm) | 16.41 | 1.51 | 9.22 | 17.65 | 1.52 | 8.60 | 17.35 | 1.70 | 9.80 | 18.22 | 1.74 | 9.55 | |
穗粒数GNPS | 43.92 | 8.20 | 18.68 | 47.47 | 7.72 | 16.26 | 46.34 | 8.29 | 17.90 | 47.00 | 7.89 | 16.78 | |
千粒重TKW (g) | 45.72 | 4.39 | 9.59 | 47.12 | 5.02 | 10.66 | 44.20 | 6.32 | 14.29 | 45.71 | 5.03 | 11.00 | |
粒长GL (cm) | 6.65 | 0.35 | 5.28 | 6.68 | 0.34 | 5.12 | 6.68 | 0.34 | 5.08 | 6.69 | 0.36 | 5.35 | |
粒宽GW (cm) | 3.32 | 0.14 | 4.23 | 3.37 | 0.15 | 4.31 | 3.27 | 0.18 | 5.50 | 3.32 | 0.16 | 4.97 | |
单穗产量GWPS (g) | 2.01 | 0.43 | 21.42 | 2.24 | 0.43 | 19.03 | 2.04 | 0.45 | 21.98 | 2.15 | 0.44 | 20.62 |
表2
小麦种质各性状指标耐氮系数PI的区间分布"
年份 Year | 性状 Trait | 低氮胁迫N1/N3 Low nitrogen stress N1/N3 (%) | 高氮胁迫N2/N4 High nitrogen stress N2/N4 (%) | ||||
---|---|---|---|---|---|---|---|
0≤PI1<0.5 | 0.5≤PI1<1 | 1≤PI1<1.5 | 0≤PI2<0.5 | 0.5≤PI2<1 | 1≤PI2<1.5 | ||
2019 | 株高PH | 0.00 | 65.74 | 34.26 | 0.00 | 46.30 | 53.70 |
穗长SL | 0.93 | 71.30 | 26.85 | 0.00 | 25.93 | 74.07 | |
旗叶长FLL | 0.93 | 73.15 | 25.00 | 0.00 | 28.70 | 68.52 | |
旗叶宽FLW | 0.00 | 77.78 | 22.22 | 0.00 | 28.70 | 69.44 | |
茎粗SD | 0.00 | 69.44 | 30.5 | 0.00 | 31.48 | 68.52 | |
可育小穗数FSN | 0.00 | 50.93 | 49.07 | 0.00 | 38.89 | 61.11 | |
穗粒数GNPS | 0.93 | 63.8 | 33.33 | 0.00 | 36.11 | 63.89 | |
千粒重TKW | 0.00 | 48.08 | 50.96 | 0.00 | 58.16 | 41.84 | |
粒长GL | 0.00 | 47.12 | 52.88 | 0.00 | 61.22 | 38.78 | |
粒宽GW | 0.00 | 47.12 | 52.88 | 0.00 | 62.24 | 37.76 | |
单穗产量GWPS | 0.96 | 67.31 | 30.77 | 0.00 | 47.96 | 50.00 | |
2020 | 株高PH | 0.00 | 61.90 | 38.10 | 0.00 | 46.15 | 53.85 |
穗长SL | 0.00 | 78.10 | 20.95 | 0.00 | 32.69 | 67.31 | |
旗叶长FLL | 0.00 | 66.67 | 32.38 | 0.00 | 37.50 | 62.50 | |
旗叶宽FLW | 0.00 | 54.29 | 38.10 | 0.00 | 26.92 | 56.73 | |
茎粗SD | 0.00 | 70.48 | 29.52 | 0.00 | 70.19 | 29.81 | |
可育小穗数FSN | 0.00 | 71.43 | 28.57 | 0.00 | 41.35 | 58.65 | |
穗粒数GNPS | 0.00 | 63.81 | 35.24 | 0.00 | 58.65 | 39.42 | |
千粒重TKW | 0.00 | 42.86 | 55.24 | 0.00 | 61.54 | 28.85 | |
粒长GL | 0.00 | 58.10 | 41.90 | 0.00 | 47.12 | 52.88 | |
粒宽GW | 0.00 | 43.81 | 56.19 | 0.00 | 59.62 | 40.38 | |
单穗产量GWPS | 0.95 | 59.05 | 34.29 | 0.00 | 57.69 | 41.35 |
表3
小麦氮效率相关性状的主成分分析"
性状 Trait | 耐低氮性(PI-L) Low nitrogen tolerance (PI-L) | 耐高氮性(PI-G) High nitrogen tolerance (PI-G) | ||||||
---|---|---|---|---|---|---|---|---|
因子1 Factor1 | 因子2 Factor2 | 因子3 Factor2 | 因子4 Factor4 | 因子1 Factor1 | 因子2 Factor1 | 因子3 Factor1 | 因子4 Factor1 | |
株高PH | 0.645 | -0.085 | -0.425 | 0.465 | -0.009 | 0.586 | 0.366 | 0.218 |
穗长SL | 0.744 | -0.338 | 0.036 | 0.209 | 0.301 | 0.464 | -0.413 | 0.547 |
旗叶长FLL | 0.694 | -0.288 | -0.134 | 0.449 | 0.251 | 0.742 | 0.065 | 0.330 |
旗叶宽FLW | 0.303 | 0.223 | 0.712 | 0.411 | 0.557 | 0.152 | -0.375 | 0.059 |
茎粗SD | 0.670 | -0.383 | 0.173 | -0.249 | 0.573 | -0.058 | -0.639 | -0.088 |
可育小穗数FSN | 0.822 | -0.264 | -0.080 | -0.311 | 0.678 | 0.373 | -0.109 | -0.548 |
穗粒数GNPS | 0.475 | -0.291 | 0.460 | -0.181 | 0.352 | 0.580 | 0.506 | -0.132 |
千粒重TKW | 0.620 | 0.633 | -0.071 | -0.234 | 0.709 | -0.490 | 0.356 | 0.258 |
粒长GL | 0.242 | 0.635 | 0.196 | 0.140 | 0.554 | -0.407 | -0.015 | 0.310 |
粒宽GW | 0.506 | 0.660 | -0.163 | 0.065 | 0.679 | -0.469 | 0.311 | 0.180 |
单穗产量GWPS | 0.883 | 0.193 | -0.074 | -0.345 | 0.895 | 0.070 | 0.141 | -0.321 |
特征值Eigenvalue | 4.374 | 1.833 | 1.030 | 1.020 | 3.448 | 2.243 | 1.370 | 1.083 |
贡献率Contribution rate (%) | 39.766 | 16.661 | 9.361 | 9.275 | 31.348 | 20.387 | 12.452 | 9.850 |
累计贡献率Accumulated contribution (%) | 39.766 | 56.427 | 65.788 | 75.064 | 31.348 | 51.736 | 64.187 | 74.037 |
表4
各性状指标耐氮系数与综合评价D值的灰色关联度分析"
性状 Trait | 耐低氮性 Low nitrogen tolerance | 耐高氮性 High nitrogen tolerance | ||
---|---|---|---|---|
关联度 Correlation degree | 位次 Rank | 关联度 Correlation degree | 位次 Rank | |
株高PH | 0.781 | 5 | 0.708 | 7 |
穗长SL | 0.794 | 2 | 0.707 | 8 |
旗叶长FLL | 0.792 | 4 | 0.730 | 2 |
旗叶宽FLW | 0.748 | 11 | 0.703 | 9 |
茎粗SD | 0.755 | 9 | 0.717 | 5 |
可育小穗数FSN | 0.772 | 7 | 0.663 | 11 |
穗粒数GNPS | 0.752 | 10 | 0.712 | 6 |
千粒重TKW | 0.794 | 3 | 0.726 | 3 |
粒长GL | 0.765 | 8 | 0.701 | 10 |
粒宽GW | 0.773 | 6 | 0.718 | 4 |
单穗产量GWPS | 0.815 | 1 | 0.765 | 1 |
[1] |
ZHU Z L, CHEN D L. Nitrogen fertilizer use in China contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002, 63:117-127.
doi: 10.1023/A:1021107026067 |
[2] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795. |
JU X T, GU B J. Current status, problems and trends of nitrogen fertilizer application in farmland in my country. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese) | |
[3] |
HOU X K, ZHAN X Y, ZHOU F, YAN X Y, GU B J, STEFAN R, WU Y L, LIU H B, PIAO S L, TANG Y H. Detection and attribution of nitrogen runoff trend in China's croplands. Environmental Pollution, 2018, 234:270-278.
doi: 10.1016/j.envpol.2017.11.052 |
[4] |
ZHANG Y F, WU H, YAO M Y, ZHOU J, WU K B, HU M P, SHEN H, CHEN D J. Estimation of nitrogen runoff loss from croplands in the Yangtze River Basin: A meta-analysis. Environmental Pollution, 2021, 272:116001.
doi: 10.1016/j.envpol.2020.116001 |
[5] | 黄国勤, 王兴祥, 钱海燕, 张桃林, 赵其国. 施用化肥对农业生态环境的负面影响及对策. 生态环境, 2004, 13(4): 656-660. |
HUANG G Q, WANG X X, QIAN H Y, ZHANG T L, ZHAO Q G. The negative effects of applying chemical fertilizers on the agricultural ecological environment and countermeasures. Ecological Environment, 2004, 13(4): 656-660. (in Chinese) | |
[6] | 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018, 32(8): 1656-1663. |
ZHONG S R, GONG S Y, ZHANG S C, CHEN R X, LIU Q Y, ZHAI X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1656-1663. (in Chinese) | |
[7] | 董鲁明. 不同类型玉米品种氮高效生理特性研究[D]. 扬州: 扬州大学, 2009. |
DONG L M. Study on physiological characteristics of different types of maize varieties with nitrogen efficiency[D]. Yangzhou: Yangzhou University, 2009. (in Chinese) | |
[8] | 杨睿, 伍晓明, 安蓉, 李亚军, 张玉莹, 陈碧云, 高亚军. 不同基因型油菜氮素利用效率的差异及其与农艺性状和氮营养性状的关系. 植物营养与肥料学报, 2013, 19(3): 586-596. |
YANG R, WU X M, AN R, LI Y J, ZHANG Y Y, CHEN B Y, GAO Y J. Differences of nitrogen use efficiency of rapeseed (Brassica napus L.) genotypes and their relations to agronomic and nitrogen characteristics. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 586-596. (in Chinese) | |
[9] | 韩璐, 张薇. 棉花苗期氮营养高效品种筛选. 中国农学通报, 2011, 27(1): 84-88. |
HAN L, ZHANG W. Screening of cotton varieties with high nitrogen efficiency at seedling stage. Chinese Agricultural Science Bulletin, 2011, 27(1): 84-88. (in Chinese) | |
[10] | 贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30(4): 326-337. |
GUI H P, DONG Q, ZHANG H H, WANG X R, PANG N C, WANG Z, LIU J, ZHENG C S, FU X Q, ZHANG X L, SONG M Z. Preliminary screening of low nitrogen tolerant cotton genotypes at seedling stage. Cotton Science, 2018, 30(4): 326-337. (in Chinese) | |
[11] | 王准. 棉花氮高效种质筛选及评价指标的研究[D]. 北京: 中国农业科学院, 2019. |
WANG Z. Screening and evaluation index of cotton nitrogen efficient germplasm[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[12] | 王改丽. 新型甘蓝型油菜氮高效种质的筛选及其氮高效机制的研究[D]. 武汉: 华中农业大学, 2014. |
WANG G L. Screening of high nitrogen efficient germplasms and its mechanism in new-type Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese) | |
[13] | 陈志伟, 邹磊, 陆瑞菊, 王亦菲, 何婷, 杜志钊, 张艳敏, 黄剑华. 不同基因型大麦苗期耐低氮性状与产量性状的相关性. 麦类作物学报, 2010, 30(1): 158-162. |
CHEN Z W, ZOU L, LU R J, WANG Y F, HE T, DU Z Z, ZHANG Y M, HUANG J H. Study on the relationship between the traits for low-nitrogen tolerance of different barley genotypes at seedling stage and grain yield. Journal of Triticeae Crops, 2010, 30(1): 158-162. (in Chinese) | |
[14] | 强欣. 大麦不同氮利用效率品种筛选及GS基因的生物信息学分析[D]. 兰州: 甘肃农业大学, 2015. |
QIANG X. The varieties screening of nitrogen use efficiency in Hordeum vulgare and bioinformatics analysis of GS gene[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese) | |
[15] | 全晓艳. 西藏野生大麦低氮耐性机制研究[D]. 杭州: 浙江大学, 2016. |
QUAN X Y. Study on the low nitrogen tolerance mechanism of Tibetan wild barley[D]. Hangzhou: Zhejiang University, 2016. (in Chinese) | |
[16] | 姜琪, 陈志伟, 刘成洪, 何婷, 郭桂梅, 高润红, 徐红卫, 李颖波, 陆瑞菊, 黄剑华. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究. 华北农学报, 2019, 34(1): 148-155. |
JIANG Q, CHEN Z W, LIU C H, HE T, GUO G M, GUO R H, XU H W, LI Y B, LU R J, HUANG J H. Screening and identification indices of low-nitrogen tolerance for barley land-races at seedling stage. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 148-155. (in Chinese) | |
[17] | 时丽冉, 郝洪波, 李明哲. 不同基因型谷子幼苗期对低氮胁迫的响应. 作物杂志, 2014(4): 75-79. |
SHI L R, HAO H B, LI M Z. Biological response of in seedling stage different foxtail millet genotypes to low nitrogen stress. Crops, 2014(4): 75-79. (in Chinese) | |
[18] | 陈二影, 杨延兵, 秦岭, 张华文, 刘宾, 王海莲, 陈桂玲, 于淑婷, 管延安. 谷子苗期氮高效品种筛选及相关特性分析. 中国农业科学, 2016, 49(17): 3287-3297. |
CHEN E Y, YANG Y B, QIN L, ZHANG H W, LIU B, WANG H L, CHEN G L, YU S T, GUAN Y A. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seedling stage. Scientia Agricultura Sinica, 2016, 49(17): 3287-3297. (in Chinese) | |
[19] | 梁兴萍, 冯唯欣, 秦鹏飞, 刘元飞, 张瑞杰. 谷子耐低氮品种的筛选. 山西农业科学, 2016, 44(12): 1747-1750. |
LIANG X P, FENG W X, QIN P F, LIU Y F, ZHANG R J. Screening of resistance to low nitrogen varieties of millet. Journal of Shanxi Agricultural Sciences, 2016, 44(12): 1747-1750. (in Chinese) | |
[20] | 黄兴东. 谷子耐低氮胁迫品种资源的筛选与鉴定[D]. 晋中: 山西农业大学, 2017. |
HUANG X D. Screening and identification of resistance to low nitrogen varieties of foxtail millet[D]. Jinzhong: Shanxi Agricultural University, 2017. (in Chinese) | |
[21] | 连盈, 卢娟, 胡成梅, 牛胤全, 史雨刚, 杨进文, 王曙光, 张文俊, 孙黛珍. 低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选. 中国生态农业学报, 2020, 28(4): 523-534. |
LIAN Y, LU J, HU C M, NIU Y Q, SHI Y G, YANG J W, WANG S G, ZHANG W J, SUN D Z. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties. Chinese Journal of Eco-Agriculture, 2020, 28(4): 523-534. (in Chinese) | |
[22] |
LIU C J, GONG X W, WANG H L, DANG K, DENG X P, FENG B L. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiology and Biochemistry, 2020, 151:233-242.
doi: 10.1016/j.plaphy.2020.03.027 |
[23] | 陈晨, 龚海青, 张敬智, 徐寓军, 郜红建. 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 2016, 24(10): 1347-1355. |
CHEN C, GONG H Q, ZHANG J Z, XU Y J, GAO H J. Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1347-1355. (in Chinese) | |
[24] | 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22(10): 1190-1199. |
LI Q, LUO Y H, TAN J, KONG F L, YANG S M, YUAN J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seedling stage. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1190-1199. (in Chinese) | |
[25] | 裴雪霞, 王姣爱, 党建友, 张定一. 耐低氮小麦基因型筛选指标的研究. 植物养与肥料学报, 2007, 13(2): 93-98. |
PEI X X, WANG J A, DANG J Y, ZHANG D Y. An approach to the screening index for low nitrogen tolerant wheat genotype. Journal of Plant Nutrition and Fertilizer, 2007, 13(2): 93-98. (in Chinese) | |
[26] | 李丹丹, 田梦雨, 崔昊, 戴廷波, 姜东, 荆奇, 曹卫星. 小麦苗期耐低氮胁迫的基因型差异. 麦类作物学报, 2009, 29(2): 222-227. |
LI D D, TIAN M Y, CUI H, DAI T B, JIANG D, JING Q, CAO W X. Genotypic differences of low nitrogen tolerance at wheat early stage. Journal of Triticeae Crops, 2009, 29(2): 222-227. (in Chinese) | |
[27] |
赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. 中国生态农业学报, 2011, 19(5): 1199-1204.
doi: 10.3724/SP.J.1011.2011.01199 |
ZHAO H T, WANG R F, XU Y F, AN D G. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1199-1204. (in Chinese)
doi: 10.3724/SP.J.1011.2011.01199 |
|
[28] | 杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20(6): 1349-1357. |
DU B J, GAO H J, CHANG J, ZHANG L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1349-1357. (in Chinese) | |
[29] | 董振杰, 马超, 田修斌, 李欢欢, 刘文轩. 国内外小麦品种苗期耐氮胁迫能力综合评价. 贵州农业科学, 2019, 47(3): 16-20. |
DONG Z J, MA C, TIAN X B, LI H H, LIU W X. Compressive evaluation on tolerance to nitrogen stress of domestic and abroad wheat varieties at seedling stage. Guizhou Agricultural Sciences, 2019, 47(3): 16-20. (in Chinese) | |
[30] |
LIU X X, WANG S W, DENG X P, ZHANG Z Y, YIN L N. Comprehensive evaluation of physiological traits under nitrogen stress and participation of linolenic acid in nitrogen-deficiency response in wheat seedlings. BMC Plant Biology, 2020, 20(1): 501.
doi: 10.1186/s12870-020-02717-5 |
[31] | 李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 81-83. |
LI L H, LI X Q. Descriptors and Data Standard for Wheat (Triticum aestivum L.). Beijing: China Agriculture Press, 2006: 81-83. (in Chinese) | |
[32] | 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43(7): 993-1002. |
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG Q M, ZHANG S C, LIU Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agronmica Sinica, 2017, 43(7): 993-1002. (in Chinese) | |
[33] | 刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51(1): 3074-3083. |
LIU P, WU A L, WANG J S, NAN J K, DONG E W, JIAO X Y, PING J A, BAI W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Scientia Agricultura Sinica, 2018, 51(1): 3074-3083. (in Chinese) | |
[34] | 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53(16): 3214-3224. |
CHEN L, WANG J J, WANG H G, CAO X N, LIU S C, TIAN X, QIN H B, QIAO Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224. (in Chinese) | |
[35] | 冯洋, 陈海飞, 胡孝明, 周卫, 徐芳森, 蔡红梅. 我国南方主推水稻品种氮效率筛选及评价. 植物营养与肥料学报, 2014, 20(5): 1051-1062. |
FENG Y, CHEN H F, HU X M, ZHOU W, XU F S, CAI H M. Screening and evaluation of nitrogen efficiency of main rice varieties in southern my country. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1051-1062. (in Chinese) | |
[36] | 崔文芳, 高聚林, 于晓芳, 王志刚, 孙继颖, 胡树平, 苏治军, 谢珉. 高产氮高效玉米品种的筛选及其指标研究. 作物杂志, 2016(6): 38-43. |
CUI W F, GAO J L, YU X F, WANG Z G, SUN J Y, HU S P, SU Z J, XIE M. Screening on indexes of nitrogen efficient maize varieties. Crops, 2016(6): 38-43. (in Chinese) | |
[37] | 张旭. 小麦氮素高效利用的基因型差异及形态生理特性[D]. 南京: 南京农业大学, 2016. |
ZHANG X. Genotypic differences in high nitrogen utilization in wheat and their morphological and physiological characteristics[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese) | |
[38] | 黄永兰, 黎毛毛, 芦明, 万建林, 龙起樟, 王会民, 唐秀英, 范志洁. 氮高效水稻种质资源筛选及相关特性分析. 植物遗传资源学报, 2015, 16(1): 87-93. |
HUANG Y L, LI M M, LU M, WAN J L, LONG Q Z, WANG H M, TANG X Y, FAN Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. Journal of Plant Genetic Resources, 2015, 16(1): 87-93. (in Chinese) | |
[39] | 崔文芳, 高聚林, 屈佳伟, 于晓芳, 胡树平, 苏治军, 王志刚, 孙继颖, 谢岷. 氮高效玉米杂交种的筛选及氮效率相关特性分析. 玉米科学, 2016, 24(4): 72-82. |
CUI W F, GAO J L, QU J W, YU X F, HU S P, SU Z J, WANG Z G, SUN J Y, XIE M. Analysis of nitrogen efficient maize hybrid screening and nitrogen efficiency related characteristics. Journal of Maize Sciences, 2016, 24(4): 72-82. (in Chinese) | |
[40] | 顾炽明, 韩配配, 胡琼, 李银水, 廖祥生, 张志华, 谢立华, 胡小加, 秦璐, 廖星. 甘蓝型油菜苗期氮效率评价. 中国油料作物学报, 2018, 40(6): 119-128. |
GU C M, HAN P P, HU Q, LI Y S, LIAO X S, ZHANG Z H, XIE L H, HU X J, QIN L, LIAO X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chinese Journal of Oil Crop Sciences, 2018, 40(6): 119-128. (in Chinese) |
[1] | 彭海霞, 卡得艳, 张天星, 周梦蝶, 吴林楠, 辛转霞, 赵惠贤, 马猛. 过量表达小麦TaCYP78A5增加花器官的大小[J]. 中国农业科学, 2023, 56(9): 1633-1645. |
[2] | 魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测[J]. 中国农业科学, 2023, 56(9): 1670-1685. |
[3] | 张旭, 韩金妤, 李晨晨, 张丹丹, 吴启蒙, 刘胜杰, 焦韩轩, 黄硕, 李春莲, 王长发, 曾庆东, 康振生, 韩德俊, 吴建辉. 结合基因关联和转录组分析鉴定小麦成株期抗条锈病位点YrZ501-2BL的候选基因[J]. 中国农业科学, 2023, 56(8): 1429-1443. |
[4] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[5] | 马胜兰, 况福虹, 林洪羽, 崔俊芳, 唐家良, 朱波, 蒲全波. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 2023, 56(7): 1344-1358. |
[6] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[7] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[8] | 王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响[J]. 中国农业科学, 2023, 56(6): 1113-1126. |
[9] | 王脉, 董清峰, 高珅奥, 刘德政, 卢山, 乔朋放, 陈亮, 胡银岗. 小麦苗期根系性状的全基因组关联分析与优异位点挖掘[J]. 中国农业科学, 2023, 56(5): 801-820. |
[10] | 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区春小麦水分利用特征对绿肥与麦秸协同还田的响应[J]. 中国农业科学, 2023, 56(5): 838-849. |
[11] | 郭燕, 井宇航, 王来刚, 黄竞毅, 贺佳, 冯伟, 郑国清. 基于无人机影像特征的冬小麦植株氮含量预测及模型迁移能力分析[J]. 中国农业科学, 2023, 56(5): 850-865. |
[12] | 王建锋, 成嘉欣, 舒伟学, 张艳茹, 王晓杰, 康振生, 汤春蕾. 小麦条锈菌效应蛋白Hasp83在条锈菌致病性中的功能分析[J]. 中国农业科学, 2023, 56(5): 866-878. |
[13] | 丁锦峰, 徐东忆, 丁永刚, 朱敏, 李春燕, 朱新开, 郭文善. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响[J]. 中国农业科学, 2023, 56(4): 619-634. |
[14] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[15] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
|