| [1]    LAURENS F. Review of the current apple breeding programes in the world: objectives for scion cultivar improvement. Eucarpia Symposium on Fruit Breeding and Genetics, 1996, 484: 163-170. [2]    陈学森, 韩明玉, 苏桂林, 刘凤之, 过国南, 姜远茂, 毛志泉, 彭福田, 束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604. CHEN X S, HAN M Y, SU G L, LIU F Z, GUO G N, JIANG Y M, MAO Z Q, PENG F T, SHU H R. Discussion on today's world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese) [3]    ATKINSON C, ELSE M. Understanding how rootstocks dwarf fruit trees. Compact Fruit Tree, 2001, 34(2): 46-49. [4]    SELEZNYOVA A N, THORP T G, WHITE M, TUSTIN S, COSTES E. Application of architectural analysis and AMAP mod methodology to study dwarfing phenomenon: The branch structure of ‘Royal Gala’ apple grafted on dwarfing and non-dwarfing rootstock/interstock combinations. Annals of Botany, 2003, 91(6): 665-672. [5]    LAURENS F, AUDERGON J M, CLAVERIE J, CLAVERIE J, DUVAL H, GERMAIN E, KERVELLA J, LESPINASSE J. Integration of architectural types in French programes of ligneous fruit species genetic improvement. Fruits-Paris, 2000, 55(2): 141-152. [6]    李英慧, 韩振海, 许雪峰. 分子标记技术在苹果育种中的应用. 生物技术通报, 2002, 18(6): 11-14. LI Y H, HAN Z H, XU X F. Application of molecular marker technique in apple breeding. Biotechnology Bulletin, 2002, 18(6): 11-14. (in Chinese) [7]    过国南, 阎振立, 张顺妮. 我国建国以来苹果品种选育研究的回顾及今后育种的发展方向. 果树学报, 2003, 20(2): 127-134. GUO G N, YAN Z L, ZHANG S N. Review and outlook of breeding in China. Journal of Fruit Science, 2003, 20(2): 127-134. (in Chinese) [8]    王宇霖. 关于我国苹果育种研究工作的几点想法. 果树学报, 2008, 25(3): 559-565. WANG Y L. Some ideas about the apple breeding in China. Journal of Fruit Science, 2008, 25(3): 559-565. (in Chinese) [9]    黄金凤, 王冬梅, 闫忠业, 吕天星, 王颖答, 刘志. 苹果遗传图谱的构建与QTL定位研究进展. 江苏农业科学, 2016, 44(2): 4-8. HUANG J F, WANG D M, YAN Z Y, LV T X, WANG Y D, LIU Z. Advance in genetic mapping and QTL localization of apple. Jiangsu Agricultural Sciences, 2016, 44(2): 4-8. (in Chinese) [10]   WATKINS R, SPANGELO L P S. Components of genetic variance for plant survival and vigor of apple trees. Theoretical and Applied Genetics, 1970, 40(5): 195-203. [11]   DUREL C E, LAURENS F, FOUILLET A, LESPINASSE Y. Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theoretical and Applied Genetics, 1998, 96(8): 1077-1085. [12]   ORAGUZIE N C, HOFSTEE M E, BREWER L R, HOWARD C. Estimation of genetic parameters in a recurrent selection program in apple. Euphytica, 2001, 118(1): 29-37. [13]   PILCHER R L R, CELTON J M, GARDINER S E, TUSTIN D. S. Genetic markers linked to the dwarfing trait of apple rootstock ‘Malling 9’. Journal of the American Society for Horticultural Science, 2008, 133(1): 100-106. [14]   FAZIO G, WAN Y, KVIKLYS D, ROMERO L, ADAMS R, STRICKLAND D, ROBINSON T. Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. Journal of the American Society for Horticultural Science, 2014, 139(2): 87-98. [15]   FOSTER T M, CELTON J M, CHAGNÉ D, TUSTIN D S, GARDINER S E. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Horticulture Research, 2015: 1-9. [16]   HARRISON N, HARRISON R J, BARBER-PEREZ N, CASCANT- LOPEZ E, COBO-MEDINA M, LIPSKA M, FERNÁNDEZ- FERNÁNDEZ F. A new three-locus model for rootstock-   induced dwarfing in apple revealed by genetic mapping of root bark percentage. Journal of Experimental Botany, 2016, 67(6): 1871-1881. [17]   FERNÁNDEZ-FERNÁNDEZ F, ANTANAVICIUTE L, VAN DYK MM, TOBUTT K R, EVANS K M, REES D J G, SARGENT D J. A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree Genetics & Genomes, 2012, 8(5): 991-1002. [18]   何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49(8): 1443-1452. HE K H, CHANG L G, CUI T T , QU J Z, GUO D W, XU S T. Mapping QTL for plant height and ear height in maize under multi- environments. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452. [19]   张江江, 詹杰鹏, 刘清云, 师家勤, 王新发, 刘贵华. 油菜株高qtl定位、整合和候选基因鉴定. 中国农业科学, 2017, 50(17): 3247-3258. ZHANG J J, ZHAN J P, LIU Q Y, SHI J Q, WANG X F, LIU G H. QTL mapping and integration as well as candidate genes identification for plant height in rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2017, 50(17): 3247-3258. [20]   姚晓云, 李清, 刘进, 姜树坤, 杨生龙,王嘉宇. 不同环境下水稻株高和穗长的QTL分析. 中国农业科学, 2015, 48(3): 407-414. YAO X Y, LI Q, LIU J, JIANG S K, YANG S L, WANG J Y. Dissection of QTLs for plant height and panicle length traits in rice under different environment. Scientia Agricultura Sinica, 2015, 48(3): 407-414. [21]   张玲, 郭爽, 汪玲, 张天泉, 庄慧, 龙珏臣等. 水稻矮化并花发育异常突变体dwarf and deformed flower 2(ddf2)的基因定位与候选基因分析. 中国农业科学, 2015, 48(10): 1873-1881. ZAHNG L, GUO S, WANG L, ZHANG T Q, ZHAUNG H, LONG Y C. Gene mapping and candidate gene analysis of a dwarf and deformed flower 2 (ddf2) mutant in rice (Oryza sativa). Scientia Agricultura Sinica, 2015, 48(10): 1873-1881. [22]   苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨. 利用永久群体在不同环境下定位黄瓜株高QTL. 中国农业科学, 2012, 45(22): 4552-4560. MIAO H, GU X F, ZHANG S P, ZHANG Z H, HAUNG S W, WANG Y. Detection of quantitative trait loci for plant height in different environments using an RIL population in cucumber. Scientia Agricultura Sinica, 2012, 45(22): 4552-4560. [23]   LODHI M A, YE G N, WEEDEN N F, REISCH B I. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology Reporter, 1994, 12(1): 6-13. [24]   VAN OOIJEN J W. JoinMap 4: Software for the calculation of genetic linkage maps in experimental populations.Kyazma BV, Wageningen, Netherlands. 2006. [25]   VAN OOIJEN J W. MapQTL® 5. Software for the mapping of quantitative trait loci in experimental populations.Kyazma BV, Wageningen, Netherlands. 2004. [26]   WANG Z, WEBER J L, ZHONG G, TANKSLEY S D. Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics, 1994, 88(1): 1-6. [27]   LEVINSON G, GUTMAN G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology And Evolution, 1987, 4(3): 203-221. [28]   RICHARDS R I, SUTHERLAND G R. Dynamic mutations: a new class of mutations causing human disease. Cell, 1992, 70(5): 709-712. [29]   LIEBHARD R, KOLLER B, GIANFRANCESCHI L, GESSLER C. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theoretical & Applied Genetics, 2003, 106(8): 1497-1508. [30]   KENIS K, KEULEMANS J, DAVEY M W. Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics & Genomes,2008, 4(4): 647-661. |