[1] 戴农. 水稻生产机械化发展现状、问题与思考. 现代农业装备, 2014(1):16-20.
DAI N. The status, problems and thinking in rice production mechanization. Modern Agricultural Equipment, 2014(1):16-20. (in Chinese)
[2] 方福平, 程式华. 论中国水稻生产能力. 中国水稻科学, 2009, 23(6): 539-566.
Fang F P, CHENG S H. Rice production capacity in China. Chinese Journal of Rice Science, 2009, 23(6): 539-566. (in Chinese)
[3] 苏相文, 高方远, 曹墨菊, 任鄄胜, 陆贤军, 吴贤婷, 刘光春, 任光俊. 利用重组自交系剖析大穗型香稻保持系川香29B产量相关性状的遗传基础. 分子植物育种, 2015, 13(1): 39-50.
Su X W, Gao F Y, Cao M J, REN J S, LU X J, WU X T, LIU G C, REN G J. Genetic basis of the traits related to yield in rice maintainer line Chuan-xiang 29B with large panicle and aroma using recombinant inbred lines. Molecular Plant Breeding, 2015, 13(1): 39-50.
[4] Ikeda M, Kitano H, Matsuoka M. Yield. Genetics and Genomics of Rice. Springer New York, 2013: 227-235.
[5] Huang R, Jiang L, Zheng J, ZHENG J H, WANG T S, WANG H C, HUANG Y, HONG Z L. Genetic bases of rice grain shape: so many genetics, so little known. Trends in Plant Science, 2013, 18(4): 218-226.
[6] Zhu Y B, Guo Y C, Liang K J, SUN X L. Progress on the genes controlling grain shape of rice. Journal of Fujian Agriculture & Forestry University, 2015, 44(1): 1-7.
[7] Ashikari M, Sakakibara H, Lin S, YAMAMOTO T, TAKASHI T, NISHIMURA A, ANGELES E R, QIAN Q, KITANO H, MATSUOKA M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.
[8] Yoshida A, Sasao M, Yasuno N, TAKAGI K, DAIMON Y, CHEN R H, YAMAZAKI R, TOKUNAGA H, KITAGUCHI Y, SATO Y, NAGAMURA Y, USHIJIMA T, KUMAMARU T, LIDA S, MAEKAWA M, KYOZUKA K. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 767.
[9] Huang X Z, Qian Q, Liu Z G, SUN H Y, HE S Y, LUO D, XIA G G, CHU C G, LI J Y, FU X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494.
[10] Jiao Y Q, Wang Y H, XUE D W, WANG J, YAN M X, LIU G F, DONG G J, ZENG D L, LU Z F, ZHU X D, QIAN Q, LI J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544.
[11] Xue W Y, Xing Y Z, Weng X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761.
[12] Wei X J, Xu J F, Guo H N, JIANG L, CHENG S H, YU C Y, ZHOU Z L, HU P S, ZHAI H Q, WAN J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential stimultaneously. Plant Physiology, 2010, 153(4): 1747-1758.
[13] Song X J, Huang W, Shi M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623.
[14] Shomura A, Izawa T, Ebana K, ENBITANI T, KANEGAE H, KONISHI H, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8): 1023-1028.
[15] Chin J H, Chu S H, Jiang W, CHO Y, BASYIRIN R, DARSHAN S, KOH H. Identification of QTLs for hybrid fertility in inter-subspecific crosses of rice (Oryza sativa, L.). Genes & Genomics, 2011, 33(1): 39-48.
[16] Mao H L, Sun S G, Yao J L, WANG C J, YU S B, XU C G, LI X G, ZHANG Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584.
[17] Li Y B, Fan C C, Xing Y, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI C J, XIAO J H, HE Y Q, ZHANG Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43(12): 1266-1269.
[18] Sun L J, Li X J, Fu Y G, ZHU Z F, TAN L B, LIU F X, SUN X Y, SUN X W, XUN C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Chinese Bulletin of Botany, 2013, 55(10): 938-949.
[19] Wang S K, Wu K, Yuan Q B, LIU X Y, LIU Z G, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950.
[20] Ishimaru K, Hirotsu N, Madoka Y, MURAKAMI N, HARE N, ONODERA H, KASHIWAGI T, UJIIE K, SHIMIZU B,ONISHI A, MIYAGAWA H, KATOH E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013, 45(6): 707.
[21] Qi P, Lin Y S, Song X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG M Z, JIANG L W, GAO J P, LIN H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012, 22(12): 1666-1680.
[22] Wang Y X, Xiong G S, Hu J, JIANG L, YU H, XU J, FANG Y X, ZENG L J, XU E, XU J, YE W J, MENG X B, LIU R F, CHEN H Q, JING Y H, JING Y H, WANG Y H, ZHU X D, LI J Y, QIAN Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature genetics, 2015, 47(8): 944-948.
[23] 李金路, 王硕, 于婧, 王玲, 周世良. 一种改良的植物DNA提取方法. 植物学报, 2013, 48(1): 72-78.
Li J L, Wang S, YU J, WANG L, ZHOU S L. A modified method for extracting plant DNA. Chinese Bulletin of Botany, 2013, 48(1): 72-78. (in Chinese)
[24] Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. 1992.
[25] Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch S. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theoretical and Applied Genetics, 2001, 102(1): 41-52.
[26] Wang S, Basten C J, Zeng Z B. Windows QTL cartographer 2.5 department of statistics. Raleigh, USA: North Carolina State University, 2006.
[27] Blair M W, Panaud O, McCouch S R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1999, 98(5): 780-792.
[28] Yang J, Hu C C, Ye X Z, YU R D, XIA Z, YE X Z, ZHU J. QTLNetwork-2.1 user manual. Hangzhou: Zhejiang University, 2005.
[29] 董少玲, 张颖慧, 张亚东, 陈涛, 赵庆勇, 朱镇, 周慧丽, 姚姝, 赵凌, 王才琳. 水稻重组自交系分子遗传图谱构建及分蘖角的 QTL检测. 江苏农业学报, 2012, 28(2): 10-16.
Dong S L, Zhang Y L, Zhang Y D, CHEN T, ZHAO Q Y, ZHU Z, ZHOU H L, YAO S, ZHAO L, WANG C L. Construction of molecular genetic linkage map based on a rice RIL populations and detection of QTL for tiller angle. Jiangsu Journal of Agricultural Sciences, 2012, 28(2): 10-16. (in Chinese)
[30] 沈希宏, 陈深广, 曹立勇, 占小登, 陈代波, 吴明伟, 程式华. 超级杂交稻协优 9308 重组自交系的分子遗传图谱构建. 分子植物育种, 2008, 6(5): 861-866.
Shen X H, Chen S G, Cao L Y, zhan x d, chen d b, wu m w, chenG s h. Construction of genetic linkage map based on RIL population derived from super hybrid rice XY9308. Molecular Plant Breeding, 2008, 6(5): 861-866. (in Chinese)
[31] 徐小飒, 刘喜, 赵志刚, 周裕军, 吴盛阳, 周蓉, 张俊杰, 江玲, 万建民. 培矮64S/93- 11重组自交系分子图谱构建及千粒重QTL检测. 南京农业大学学报, 2011, 34(1): 8-13.
Xu X S, Liu X, Zhao Z G, ZHOU Y J, WU S Y, ZHOU R, ZHANG J J, JIANG L, WAN J M. Construction of genetic linkage map based on a RILs population derived from the hybrid rice Peiai 64S / 93- 11 and detection of QTL for 1000-grain weight. Journal of Nanjing Agricultural University, 2011, 34(1): 8-13. (in Chinese)
[32] Zhang L, Wang S, Li H, DENG Q M, ZHENG A P, LI S C, LI P, LI Z L, WANG J K. Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theoretical and Applied Genetics, 2010, 121(6): 1071-1082.
[33] Guo S, Xu Y, Liu H, MAO Z, ZHANG C. MA Y, ZHANG q, chong k. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications, 2013, 4: 1566-1577.
[34] 占小登, 于萍, 林泽川, 陈代波, 沈希宏, 张迎信, 付君林, 程式华, 曹立勇. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状 QTL. 中国水稻科学, 2014, 28(6): 570-580.
Zhan X D, Yu P, Lin Z C, CHEN D B, SHEN X H, ZHANG Y X, FU J L, CHENG S H, CAO L Y. QTL mapping of heading date and yield-related traits in rice using recombination inbred lines (RILs) population derived from BG1/XJL. Chinese Journal of Rice Science, 2014, 28(6): 570-580. (in Chinese)
[35] Chen J H. Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2014, 127(11): 2515-2524.
[36] Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theoretical and Applied Genetics, 1997, 95(7): 1025-1032.
[37] HEANG D, SASSA H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS ONE, 2012, 7(2): e31325.
[38] Nakagawa H, Mori M. Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiology, 2012, 158(3): 1208.
[39] 赵建国, 蒋开锋, 杨莉, 杨乾华, 万先奇, 曹应江, 游书梅, 罗婧, 张涛. 水稻产量相关性状 QTL定位. 中国水稻科学, 2013, 27(4): 344-352.
Zhao J G, Jiang K F, Yang L, Yang Q H, WAN X Q, CAO Y J, YOU S M, LUO Q, ZHANG T. QTL mapping for yield related components in a RIL population of rice. Chinese Journal of Rice Science, 2013, 27(4): 344-352. (in Chinese)
[40] 杨占烈, 戴高兴, 翟荣荣, 林泽川, 王会民, 曹利用, 程式华. 多环境条件下超级杂交稻协优9308重组自交系群体粒形性状的 QTL分析. 中国水稻科学, 2013, 27(5): 482-490.
Yang Z L, Dai G X, ZHAI R R, LIN Z C, WANG H M, CAI L Y, CHENG S H. QTL analysis of rice grain shape traits by using recombinant inbred lines from super hybrid rice 9308 in multi-environments. Chinese Journal of Rice Science, 2013, 27(5): 482-490. (in Chinese) |