[1] Stockmann U, Adams M A, Crawford J W, Fielda D J, Henakaarchchi N, Jenkins M, Minasnya B. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 2013, 164(4): 80-99.
[2] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627.
[3] Pan G, Xu X, Smith P, Pan W, Lal R. An increase in topsoil soc stock of china's croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems and Environment, 2010, 136(1/2): 133-138.
[4] Jiang G Y, Xu M G, He X H, Zhang W J, Huang S M, Yang X Y, Liu H, Peng C, Shirato Y, Toshichika L, Wang J Z, Murphy D V. Soil organic carbon sequestration in upland soils of northern china under variable fertilizer management and climate change scenarios. Global Biogeochemical Cycles, 2014, 28(3), 319-333.
[5] Peltre C, Christensen B T, Dragon S, Icard C, Kätterer T, Houot S. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biology and Biochemistry, 2012, 52(2014): 49-60.
[6] Smith P, Smith J U, Powlson D S, Mcgill W B, Arah J R M, Chertov O G, Coleman K, Franko U, Frolking S, Jenkinson D C, Jensen L S, Kelly R H, Klein- Gunnewiek H, Komarov A S, Li C, Molina J A E, Mueller T, Parton W J, Thornley J H M, Whitmore A P. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81(1/2): 153-225.
[7] Heitkamp F, Wendland M, Offenberger K, Gerold G. Implications of input estimation, residue quality and carbon saturation on the predictive power of the rothamsted carbon model. Geoderma, 2012, 170: 168-175.
[8] Ludwig B, Helfrich M, Flessa H. Modelling the long-term stabilization of carbon from maize in a silty soil. Plant and Soil, 2005, 278(1): 315-325.
[9] Shirato Y, Paisancharoen K, Sangtong P, Nakviro C, Yokozawa M, Matsumoto N. Testing the rothamsted carbon model against data from long-term experiments on upland soils in thailand. European Journal of Soil Science, 2005, 56(2): 179-188.
[10] Wang J, Lu C, Xu M, Huang S, Zhang W. Soil organic carbon sequestration under different fertilizer regimes in North and Northeast China: Rothc simulation. Soil Use and Management, 2013, 29(2): 182-190.
[11] Liu D L, Chan K Y, Conyers M K. Simulation of soil organic carbon under different tillage and stubble management practices using the rothamsted carbon model. Soil & Tillage Research, 2009, 104(1): 65-73.
[12] Jiang G Y, Shirato Y, Xu M G, Yagasaki Y, Huang Q H, Li Z Z. Testing the modified rothamsted carbon model for paddy soils against the results from long-term experiments in southern China. Soil Science and Plant Nutrition, 2013, 59(59): 16-26.
[13] 韩其晟, 任宏刚, 刘建军. 秦岭主要森林凋落物中易分解和难分解植物残体含量及比值研究. 西北林学院学报, 2012, 27(5): 6-10.
Han Q S, Ren H G, Liu J J. Contents and ratios of the decomposable and resistant plant material in the litters of the main trees in Qinling Mountains. Journal of Northwest Forestry University, 2012, 27(5): 6-10. ( in Chinese)
[14] Ayanaba A, Jenkinson D S. Decomposition of carbon-14 labeled ryegrass and maize under tropical conditions. Soil Science Society of America Journal, 1990, 41(5): 112-115.
[15] 王文山, 王维敏, 张镜清, 蔡典雄, 张美珠. 农作物残体在北京农田土壤中的分解. 土壤通报, 1989, 20(3): 113-115.
Wang W S, Wang W M, Zhang J Q, Cai D X, Zhang M Z. Decomposition of crop residue in farmland soil of Beijing, Chinese Journal of Soil Science, 1989, 20(3): 113-115. ( in Chinese)
[16] COLEMAN K, JENKINSON D S. RothC-26. 3: A Model for the Turnover of Carbon in Soil Model Description and Windows Users Guide. Harpenden: Lawes Agricultural Trust, 1999.
[17] Ludwig B, Hu K, Niu L, Liu X. Modelling the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted carbon model-initialization and calculation of c inputs. Plant and Soil, 2007, 10(332): 193-206.
[18] 刘朝阳. 我国典型区域有机物料的腐解特征[D]. 贵阳: 贵州大学, 2012.
Liu C Y. The decomposition characteristics of organic materials in typical regional of china [D]. Guiyang: Guizhou University, 2012. (in Chinese)
[19] Silver W, Miya R. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia, 2001, 129(3): 407-419.
[20] Zhang D, Hui D, Luo Y, Zhou G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 2008, 1(2): 85-93.
[21] 王金洲, 卢昌艾, 张文菊, 冯固, 王秀君, 徐明岗. 中国农田土壤中有机物料腐解特征的整合分析. 土壤学报, 2016, 53(1): 16-27.
Wang J Z, Lu C A, Zhang W J, Feng G, Wang X J, Xu M G. Decomposition of organic materials in cropland soils across China: A meta-analysis. Acta Pedologica Sinica, 2016, 53(1): 16-27. (in Chinese)
[22] Huang Y, Yu Y, Zhang W, Sun W, Liu S, Jiang J. Agro-c: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 2009, 149(1): 106-129.
[23] Parton W J, Schimel D S, Cole C V, Ojima D S. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal., 1987, 51(5): 1173-1179
[24] Wang J, Wang X, Xu M, Feng G, Zhang W, Yang X, Huang S. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in North China. Scientific Reports, 2015, 5: 1-12.
[25] Qiao Y, Miao S, Li N, Xu Y, Han X, Zhang B. Crop species affect soil organic carbon turnover in soil profile and among aggregate sizes in a mollisol as estimated from natural 13 abundance. Plant and Soil, 2015, 392(1/2): 163-174.C |