中国农业科学 ›› 2022, Vol. 55 ›› Issue (23): 4664-4677.doi: 10.3864/j.issn.0578-1752.2022.23.008
收稿日期:
2021-11-10
接受日期:
2022-12-24
出版日期:
2022-12-01
发布日期:
2022-12-06
联系方式:
李佳燕,E-mail:jylfearless@126.com。
基金资助:
LI JiaYan(),SUN LiangJie*(),MA Nan,WANG Feng,WANG JingKuan*()
Received:
2021-11-10
Accepted:
2022-12-24
Published:
2022-12-01
Online:
2022-12-06
摘要: 目的 秸秆还田是增加土壤碳固定和改善土壤养分状况的重要措施之一。研究玉米不同部位残体碳、氮在土壤中的固定特征,明确秸秆还田的土壤增碳培肥机制。方法 以沈阳农业大学棕壤长期定位试验站为平台,采集不施肥和有机肥配施化肥处理的土壤分别作为低肥力(LF)和高肥力(HF)土壤,并分别与13C和15N双标记的玉米茎叶(S)、玉米根茬(R)混合,在25℃条件下进行室内培养试验。试验于第1、30、60、180和360 天取样并测定土壤总有机碳(SOC)、全氮(TN)含量及其同位素丰度,分析玉米不同部位残体碳、氮在不同肥力水平土壤中的固定特征。结果 添加玉米残体显著提高土壤SOC,一年后仍能提高14.0%。添加玉米残体后,土壤系统中有一小部分氮素可能以反硝化方式流失,且外源玉米残体氮和土壤原有老氮均有损失。与添加根茬相比,添加茎叶更有利于外源新碳、氮的增加,而且具有更强的激发老碳、氮分解/损失的效应,不利于土壤老碳、氮的固持;根茬残体则更趋向于被分解,使土壤老碳、氮得到相对的保护和固定。外源残体碳虽然在低肥力土壤中的固定较少,但是对低肥力土壤碳库的提升具有更大的贡献。添加残体后低肥力土壤的C/N和13C/15N(代表土壤中来自于外源残体的C/N)显著高于高肥力土壤。但本研究结果表明13C/15N并不是限制低肥力土壤中残体分解和固定的主要因素,其主要原因可能在于底物长期选择条件下的特异性土著土壤微生物群落较为稳定,对于外源有机质加入的干扰具有抵抗力造成的。结论 土壤中添加玉米不同部位残体均可显著提高土壤碳、氮水平,但其内在的残体新碳/氮和土壤老碳/氮的固定策略相异。低肥力土壤较高肥力土壤对外源碳的固定少,其对不同部位残体的固定在本研究中并不受到来自于外源残留残体C/N的影响。
李佳燕,孙良杰,马南,王丰,汪景宽. 不同肥力棕壤玉米根茬和茎叶残体碳氮的固定特征[J]. 中国农业科学, 2022, 55(23): 4664-4677.
LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility[J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
表1
试验土壤(0—20 cm土层)的基本理化性状"
处理 Treatment | 有机碳 Soil organic carbon (g·kg-1) | 全氮 Soil total nitrogen (g·kg-1) | 碳氮比 C/N | δ13C值 δ13C value (‰) | δ15N 值 δ15N value (‰) | pH |
---|---|---|---|---|---|---|
高肥土壤HF High-fertility soil, HF | 15.22±0.17A | 1.71±0.03A | 8.90±0.11 | -19.67±0.09A | 8.67±0.57A | 5.91±0.05B |
低肥土壤LF Low-fertility soil, LF | 11.72±0.01B | 1.27±0.01B | 9.23±0.09 | -18.16±0.14B | 8.39±0.35B | 6.34±0.02A |
表3
不同处理土壤总有机碳含量随时间变化情况"
处理 Treatment | 土壤总有机碳 Soil organic carbon (g·kg-1) | ||||
---|---|---|---|---|---|
1 d | 30 d | 60 d | 180 d | 360 d | |
HF | 15.22±0.17aC | 15.10±0.17aB | 14.78±0.17bB | 14.73±0.09bB | 14.37±0.07bB |
LF | 11.72±0.01aD | 11.05±0.19bC | 10.99±0.26bC | 10.75±0.23bD | 10.48±0.04bD |
HF+R | 23.53±0.13aA | 18.55±0.12bA | 17.58±0.16cA | 16.34±0.33dA | 15.85±0.41dA |
LF+R | 20.70±0.28aB | 15.47±0.24bB | 15.26±0.20bB | 13.36±0.20cC | 12.33±0.21dC |
HF+S | 22.55±0.37aA | 17.96±0.25bA | 17.45±0.10bcA | 16.59±0.31cdA | 16.05±0.41dA |
LF+S | 19.56±0.30aB | 15.63±0.21bB | 14.95±0.14bB | 12.71±0.29cC | 12.85±0.23cC |
表 4
不同处理下土壤全氮含量随时间变化情况"
处理 Treatment | 土壤全氮 Soil total nitrogen (g·kg-1) | ||||
---|---|---|---|---|---|
1 d | 30 d | 60 d | 180 d | 360 d | |
HF | 1.71±0.03aB | 1.63±0.03abC | 1.62±0.03abB | 1.59±0.01bB | 1.62±0.03abB |
LF | 1.27±0.01bD | 1.37±0.02aD | 1.27±0.04bC | 1.31±0.01abC | 1.20±0.01cC |
HF+R | 1.83±0.02aA | 1.82±0.01aB | 1.80±0.03abA | 1.69±0.01cA | 1.75±0.02bcA |
LF+R | 1.36±0.02abC | 1.41±0.02aD | 1.29±0.05bC | 1.31±0.03abC | 1.25±0.02bC |
HF+S | 1.87±0.02aA | 1.89±0.01aA | 1.73±0.04bA | 1.68±0.01bcA | 1.60±0.03cB |
LF+S | 1.39±0.01aC | 1.37±0.03aD | 1.33±0.02abC | 1.25±0.03bcC | 1.26±0.01bcC |
表5
不同处理下土壤C/N比随时间变化情况"
处理 Treatment | 土壤碳氮比 C/N | ||||
---|---|---|---|---|---|
1 d | 30 d | 60 d | 180 d | 360 d | |
HF | 9.23±0.11abC | 9.45±0.12aC | 9.15±0.21abD | 9.29±0.08abC | 8.87±0.14bC |
LF | 9.25±0.09aC | 8.07±0.27bD | 8.66±0.29abD | 8.22±0.16bD | 8.73±0.12abC |
HF+R | 12.89±0.13aB | 10.20±0.12bB | 9.75±0.17bcB | 9.65±0.20cdB | 9.07±0.14dB |
LF+R | 15.22±0.07aA | 11.00±0.31bA | 11.87±0.39bA | 10.23±0.09cA | 9.84±0.29cA |
HF+S | 12.08±0.09aB | 9.48±0.13bC | 10.09±0.30bC | 9.85±0.14cB | 10.01±0.09cB |
LF+S | 14.09±0.12aB | 11.41±0.44bB | 11.24±0.26cB | 10.15±0.43dB | 10.18±0.27dB |
[1] |
SPRINGOB G, KIRCHMANN H. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology and Biochemistry, 2003, 35(4): 629-632. doi:10.1016/S0038-0717(03)00052-X.
doi: 10.1016/S0038-0717(03)00052-X |
[2] |
ZHOU Z C, ZHANG X Y, GAN Z T. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China. Journal of Arid Land, 2015, 7(6): 806-813. doi:10.1007/s40333-015-0051-y.
doi: 10.1007/s40333-015-0051-y |
[3] |
盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018, 51(12): 2336-2347. doi:10.3864/j.issn.0578-1752.2018.12.010.
doi: 10.3864/j.issn.0578-1752.2018.12.010 |
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. doi:10.3864/j.issn.0578-1752.2018.12.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.12.010 |
|
[4] |
胡延斌, 肖国举, 仇正跻, 戴君丽, 李永平. 西北半干旱区农田土壤有机碳和全氮分布特征及其对地膜玉米产量的影响. 水土保持研究, 2021, 28(1): 58-64, 403. doi:10.13869/j.cnki.rswc.2021.01.007.
doi: 10.13869/j.cnki.rswc.2021.01.007 |
HU Y B, XIAO G J, QIU Z J, DAI J L, LI Y P. Distribution characteristics of soil organic carbon and total nitrogen and its influence on film-mulched maize in farmland in northwest semiarid region. Research of Soil and Water Conservation, 2021, 28(1): 58-64, 403. doi:10.13869/j.cnki.rswc.2021.01.007. (in Chinese)
doi: 10.13869/j.cnki.rswc.2021.01.007 |
|
[5] |
WHITBREAD A, BLAIR G, KONBOON Y, LEFROY R, NAKLANG K. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agriculture, Ecosystems & Environment, 2003, 100(2/3):251-263. doi:10.1016/S0167-8809(03)00189-0.
doi: 10.1016/S0167-8809(03)00189-0 |
[6] |
ABIVEN S, RECOUS S, REYES V, OLIVER R. Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biology and Fertility of Soils, 2005, 42(2): 119. doi:10.1007/s00374-005-0006-0.
doi: 10.1007/s00374-005-0006-0 |
[7] |
RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 2005, 269(1): 341-356. doi:10.1007/s11104-004-0907-y.
doi: 10.1007/s11104-004-0907-y |
[8] |
KLOTZBÜCHER T, KAISER K, GUGGENBERGER G, GATZEK C, KALBITZ K. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology, 2011, 92(5): 1052-1062. doi:10.1890/10-1307.1.
doi: 10.1890/10-1307.1 pmid: 21661566 |
[9] |
COTRUFO M F, WALLENSTEIN M D, BOOT C M, DENEF K, PAUL E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19(4): 988-995. doi:10.1111/gcb.12113.
doi: 10.1111/gcb.12113 pmid: 23504877 |
[10] |
王楠, 陈殿元, 张晋京, 姜帅, 付加禹, 杨溥原, 刘占宇. 施氮水平对基础肥力不同的玉米田土壤有机碳组分数量的影响. 玉米科学, 2016, 24(6): 114-119. doi:10.13597/j.cnki.maize.science.20160619.
doi: 10.13597/j.cnki.maize.science.20160619 |
WANG N, CHEN D Y, ZHANG J J, JIANG S, FU J Y, YANG P Y, LIU Z Y. Effect of nitrogen applied levels on the amounts of organic C components from corn field soils with different basic fertilities. Journal of Maize Sciences, 2016, 24(6): 114-119. doi:10.13597/j.cnki.maize.science.20160619. (in Chinese)
doi: 10.13597/j.cnki.maize.science.20160619 |
|
[11] |
盖霞普, 刘宏斌, 杨波, 王洪媛, 翟丽梅, 雷秋良, 武淑霞, 任天志. 不同施肥年限下作物产量及土壤碳氮库容对增施有机物料的响应. 中国农业科学, 2019, 52(4): 676-689. doi:10.3864/j.issn.0578-1752.2019.04.009.
doi: 10.3864/j.issn.0578-1752.2019.04.009 |
GAI X P, LIU H B, YANG B, WANG H Y, ZHAI L M, LEI Q L, WU S X, REN T Z. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years. Scientia Agricultura Sinica, 2019, 52(4): 676-689. doi:10.3864/j.issn.0578-1752.2019.04.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.04.009 |
|
[12] | 郭策, 高雪莹, 王鸿斌, 隋标, 赵兰坡, 赵兴敏. 玉米秸秆添加对不同母质黑钙土有机碳含量及团聚体稳定性的影响. 吉林农业大学学报, 2021. . |
GUO C, GAO X Y, WANG H B, SUI B, ZHAO L P, ZHAO X M. Effects of maize straw incorporation on the content of organic carbon and stability of aggregates in Chernozem derived from different parent materials. Journal of Jilin Agricultural University, 2021. . (in Chinese) | |
[13] |
GE T D, LI B Z, ZHU Z K, HU Y J, YUAN H Z, DORODNIKOV M, JONES D L, WU J S, KUZYAKOV Y. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils, 2017, 53(1): 37-48. doi:10.1007/s00374-016-1155-z.
doi: 10.1007/s00374-016-1155-z |
[14] |
WU L, XU H, XIAO Q, HUANG Y P, SULEMAN M M, ZHU P, KUZYAKOV Y, XU X L, XU M G, ZHANG W J. Soil carbon balance by priming differs with single versus repeated addition of glucose and soil fertility level. Soil Biology and Biochemistry, 2020, 148: 107913. doi:10.1016/j.soilbio.2020.107913.
doi: 10.1016/j.soilbio.2020.107913 |
[15] |
WEI L, GE T D, ZHU Z K, LUO Y, YANG Y H, XIAO M L, YAN Z F, LI Y H, WU J S, KUZYAKOV Y. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 2021, 398: 115121. doi:10.1016/j.geoderma.2021.115121.
doi: 10.1016/j.geoderma.2021.115121 |
[16] |
张玉铭, 胡春胜, 陈素英, 王玉英, 李晓欣, 董文旭, 刘秀萍, 裴林, 张惠. 耕作与秸秆还田方式对碳氮在土壤团聚体中分布的影响. 中国生态农业学报(中英文), 2021, 29(9): 1558-1570. doi:10.13930/j.cnki.cjea.200791.
doi: 10.13930/j.cnki.cjea.200791 |
ZHANG Y M, HU C S, CHEN S Y, WANG Y Y, LI X X, DONG W X, LIU X P, PEI L, ZHANG H. Effects of tillage and straw returning method on the distribution of carbon and nitrogen in soil aggregates. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1558-1570. doi:10.13930/j.cnki.cjea.200791. (in Chinese)
doi: 10.13930/j.cnki.cjea.200791 |
|
[17] |
陈春兰, 陈安磊, 魏文学, 张文钊, 傅心赣, 周华军, 秦红灵. 长期施肥对红壤稻田剖面土壤碳氮累积的影响. 水土保持研究, 2021, 28(2): 14-20. doi:10.13869/j.cnki.rswc.2021.02.003.
doi: 10.13869/j.cnki.rswc.2021.02.003 |
CHEN C L, CHEN A L, WEI W X, ZHANG W Z, FU X G, ZHOU H J, QIN H L. Effect of long-term fertilization on accumulation of soil carbon and nitrogen in reddish paddy soil profiles. Research of Soil and Water Conservation, 2021, 28(2): 14-20. doi:10.13869/j.cnki.rswc.2021.02.003. (in Chinese)
doi: 10.13869/j.cnki.rswc.2021.02.003 |
|
[18] |
AN T T, SCHAEFFER S, LI S Y, FU S F, PEI J B, LI H, ZHUANG J, RADOSEVICH M, WANG J K.Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biology and Biochemistry, 2015, 80: 53-61. doi:10.1016/j.soilbio.2014.09.024.
doi: 10.1016/j.soilbio.2014.09.024 |
[19] |
CONRAD R, KLOSE M, YUAN Q, LU Y H, CHIDTHAISONG A. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry, 2012, 49: 193-199. doi:10.1016/j.soilbio.2012.02.030.
doi: 10.1016/j.soilbio.2012.02.030 |
[20] |
BLAUD A, LERCH T Z, CHEVALLIER T, NUNAN N, CHENU C, BRAUMAN A. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Applied Soil Ecology, 2012, 53: 1-9. doi:10.1016/j.apsoil.2011.11.005.
doi: 10.1016/j.apsoil.2011.11.005 |
[21] |
CASTELLANO M J, MUELLER K E, OLK D C, SAWYER J E, SIX J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 2015, 21(9): 3200-3209. doi:10.1111/gcb.12982.
doi: 10.1111/gcb.12982 pmid: 25990618 |
[22] |
徐虎, 张敬业, 蔡岸冬, 王小利, 张文菊. 外源有机物料碳氮在红壤团聚体中的残留特征. 中国农业科学, 2015, 48(23): 4660-4668. doi:10.3864/j.issn.0578-1752.2015.23.007.
doi: 10.3864/j.issn.0578-1752.2015.23.007 |
XU H, ZHANG J Y, CAI A D, WANG X L, ZHANG W J. Retention characteristic of carbon and nitrogen from amendments in different size aggregates of red soil. Scientia Agricultura Sinica, 2015, 48(23): 4660-4668. doi:10.3864/j.issn.0578-1752.2015.23.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.23.007 |
|
[23] |
谢柠桧, 安婷婷, 李双异, 孙良杰, 裴久渤, 丁凡, 徐英德, 付时丰, 高晓丹, 汪景宽. 外源新碳在不同肥力土壤中的分配与固定. 土壤学报, 2016, 53(4): 942-950. doi:10.11766/trxb201512240476.
doi: 10.11766/trxb201512240476 |
XIE N H, AN T T, LI S Y, SUN L J, PEI J B, DING F, XU Y D, FU S F, GAO X D, WANG J K. Distribution and sequestration of exogenous new carbon in soils different in fertility. Acta Pedologica Sinica, 2016, 53(4): 942-950. doi:10.11766/trxb201512240476. (in Chinese)
doi: 10.11766/trxb201512240476 |
|
[24] |
LEHMANN J, KLEBER M. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68. doi:10.1038/nature16069.
doi: 10.1038/nature16069 |
[25] |
KUZYAKOV Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371. doi:10.1016/j.soilbio.2010.04.003.
doi: 10.1016/j.soilbio.2010.04.003 |
[26] |
WILLIAMS M A, MYROLD D D, BOTTOMLEY P J. Carbon flow from 13C-labeled straw and root residues into the phospholipid fatty acids of a soil microbial community under field conditions. Soil Biology and Biochemistry, 2006, 38(4): 759-768. doi:10.1016/j.soilbio.2005.07.001.
doi: 10.1016/j.soilbio.2005.07.001 |
[27] |
KONG A Y Y, SCOW K M, CÓRDOVA-KREYLOS A L, HOLMES W E, SIX J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biology and Biochemistry, 2011, 43(1): 20-30. doi:10.1016/j.soilbio.2010.09.005
doi: 10.1016/j.soilbio.2010.09.005 pmid: 22267876 |
[28] |
杨艳华, 苏瑶, 何振超, 喻曼, 陈喜靖, 沈阿林. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展. 应用生态学报, 2019, 30(2): 668-676. doi:10.13287/j.1001-9332.201902.026.
doi: 10.13287/j.1001-9332.201902.026 |
YANG Y H, SU Y, HE Z C, YU M, CHEN X J, SHEN A L. Transformation and distribution of straw-derived carbon in soil and the effects on soil organic carbon pool: A review. Chinese Journal of Applied Ecology, 2019, 30(2): 668-676. doi:10.13287/j.1001-9332.201902.026. (in Chinese)
doi: 10.13287/j.1001-9332.201902.026 |
|
[29] | 李忠徽. 有机肥在黄土高原土壤中的碳、氮周转特征[D]. 杨凌: 西北农林科技大学, 2018. |
LI Z H. Characteristics of soil carbon and nitrogen turnover with organic fertilizer application on the Loess Plateau[D]. Yangling: Northwest A & F University, 2018. (in Chinese) | |
[30] |
王敬, 程谊, 蔡祖聪, 张金波. 长期施肥对农田土壤氮素关键转化过程的影响. 土壤学报, 2016, 53(2): 292-304. doi:10.11766/trxb201507130273.
doi: 10.11766/trxb201507130273 |
WANG J, CHENG Y, CAI Z C, ZHANG J B. Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil: A review. Acta Pedologica Sinica, 2016, 53(2): 292-304. doi:10.11766/trxb201507130273. (in Chinese)
doi: 10.11766/trxb201507130273 |
|
[31] | LI Y K, LI B, GUO W Z, WU X P. Effects of nitrogen application on soil nitrification and denitrification rates and N2O emissions in greenhouse. Journal of Agricultural Science and Technology, 2015, 17(2): 519-530. |
[32] |
ZHOU L Y, ZHOU X H, ZHANG B C, LU M, LUO Y Q, LIU L L, LI B. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Global Change Biology, 2014, 20(7): 2332-2343. doi:10.1111/gcb.12490.
doi: 10.1111/gcb.12490 pmid: 24323545 |
[33] | 马力, 杨林章, 肖和艾, 殷士学, 夏立忠, 李运东, 刘国华. 长期施肥和秸秆还田对红壤水稻土氮素分布和矿化特性的影响. 植物营养与肥料学报, 2011, 17(4): 898-905. |
MA L, YANG L Z, XIAO H A, YIN S X, XIA L Z, LI Y D, LIU G H. Effects of long-term fertilization and straw returning on distribution and mineralization of nitrogen in paddy soils in subtropical China. Plant Nutrition and Fertilizer Science, 2011, 17(4): 898-905. (in Chinese) | |
[34] | 武星魁, 施卫明, 徐永辉, 闵炬. 长期不同化肥氮用量对设施菜地土壤氮素矿化和硝化作用的影响. 土壤, 2021. . |
WU X K, SHI W M, XU Y H, MIN J. Effects of long-term different chemical nitrogen rates on soil nitrogen mineralization and nitrification in greenhouse vegetable field. Soils, 2021. . (in Chinese) | |
[35] |
任书杰, 曹明奎, 陶波, 李克让. 陆地生态系统氮状态对碳循环的限制作用研究进展. 地理科学进展, 2006, 25(4): 58-67. doi:10.3969/j.issn.1007-6301.2006.04.007.
doi: 10.3969/j.issn.1007-6301.2006.04.007 |
REN S J, CAO M K, TAO B, LI K R. The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: A review. Progress in Geography, 2006, 25(4): 58-67. doi:10.3969/j.issn.1007-6301.2006.04.007. (in Chinese)
doi: 10.3969/j.issn.1007-6301.2006.04.007 |
|
[36] |
安嫄嫄, 马琨, 王明国, 马占旗. 玉米秸秆还田对土壤团聚体组成及其碳氮分布的影响. 西北农业学报, 2020, 29(5): 766-775. doi:10.7606/j.issn.1004-1389.2020.05.014.
doi: 10.7606/j.issn.1004-1389.2020.05.014 |
AN Y Y, MA K, WANG M G, MA Z Q. Effect of maize straw returning to field on soil aggregates and their carbon and nitrogen distributions. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(5): 766-775. doi:10.7606/j.issn.1004-1389.2020.05.014. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2020.05.014 |
|
[37] |
葛顺峰, 许海港, 季萌萌, 姜远茂. 土壤碳氮比对平邑甜茶幼苗生长和碳氮分配的影响. 植物生态学报, 2013, 37(10): 942-949. doi:10.3724/SP.J.1258.2013.00097.
doi: 10.3724/SP.J.1258.2013.00097 |
GE S F, XU H G, JI M M, JIANG Y M. Effects of soil C:N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings. Chinese Journal of Plant Ecology, 2013, 37(10): 942-949. doi:10.3724/SP.J.1258.2013.00097. (in Chinese)
doi: 10.3724/SP.J.1258.2013.00097 |
|
[38] |
丘清燕, 梁国华, 黄德卫, 陈小梅. 森林土壤可溶性有机碳研究进展. 西南林业大学学报, 2013, 33(1): 86-96. doi:10.3969/j.issn.2095-1914.2013.01.016.
doi: 10.3969/j.issn.2095-1914.2013.01.016 |
QIU Q Y, LIANG G H, HUANG D W, CHEN X M. Advances in studies on soluble organic carbon in forest soils. Journal of Southwest Forestry College, 2013, 33(1): 86-96. doi:10.3969/j.issn.2095-1914.2013.01.016. (in Chinese)
doi: 10.3969/j.issn.2095-1914.2013.01.016 |
|
[39] |
COTRUFO M F, SOONG J L, HORTON A J, CAMPBELL E E, HADDIX M L, WALL D H, PARTON W J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8(10): 776-779. doi:10.1038/ngeo2520.
doi: 10.1038/NGEO2520 |
[40] |
RUBINO M, DUNGAIT J A J, EVERSHED R P, BERTOLINI T, ANGELIS P D, D’ONOFRIO A, LAGOMARSINO A, LUBRITTO C, MEROLA A, TERRASI F, COTRUFO M F.Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment. Soil Biology and Biochemistry, 2010, 42(7): 1009-1016. doi:10.1016/j.soilbio.2010.02.018.
doi: 10.1016/j.soilbio.2010.02.018 |
[1] | 赵雅雯,王金洲,王士超,武红亮,黄绍敏,卢昌艾. 潮土区小麦、玉米残体对土壤有机碳的贡献——基于改进的RothC模型[J]. 中国农业科学, 2016, 49(21): 4160-4168. |
|