[1] |
BRADFORD M A, VEEN G F, BONIS A, BRADFORD E M, CLASSEN A T, CORNELISSEN J H C, CROWTHER T W, DE LONG J R, FRESCHET G T, KARDOL P, MANRUBIA-FREIXA M, MAYNARD D S, NEWMAN G S, LOGTESTIJN R S P, VIKETOFT M, WARDLE D A, WIEDER W R, WOOD S A, VAN DER PUTTEN W H. A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution, 2017, 1: 1836-1845.
|
[2] |
CRAIG M E, GEYER K M, BEIDLER K V, BRZOSTEK E R, FREY S D, STUART GRANDY A, LIANG C, PHILLIPS R P. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nature Communications, 2022, 13: 1229.
doi: 10.1038/s41467-022-28715-9
pmid: 35264580
|
[3] |
JOURGHOLAMI M, SOHRABI H, VENANZI R, TAVANKAR F, PICCHIO R. Hydrologic responses of undecomposed litter mulch on compacted soil: Litter water holding capacity, runoff, and sediment. Catena, 2022, 210: 105875.
|
[4] |
SAGI N, HAWLENA D. Climate dependence of the macrofaunal effect on litter decomposition-A global meta-regression analysis. Ecology Letters, 2024, 27(1): e14333.
|
[5] |
BRADFORD M A, BERG B, MAYNARD D S, WIEDER W R, WOOD S A. Understanding the dominant controls on litter decomposition. Journal of Ecology, 2016, 104(1): 229-238.
|
[6] |
WANG Y N, LI F Y, SONG X, WANG X S, SURI G G, BAOYIN T. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agriculture, Ecosystems & Environment, 2020, 303: 107119.
|
[7] |
COTRUFO M F, SOONG J L, HORTON A J, CAMPBELL E E, HADDIX M, WALL D H, PARTON W J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779.
doi: 10.1038/NGEO2520
|
[8] |
REN C J, ZHAO F Z, SHI Z, CHEN J, HAN X H, YANG G H, FENG Y Z, REN G X. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology and Biochemistry, 2017, 115: 1-10.
|
[9] |
ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 2010, 3: 336-340.
|
[10] |
高钰, 雍少宁, 王俊峰. 增温对青藏高原高寒沼泽草甸不同时期土壤酶活性的影响. 生态科学, 2023, 42(1): 1-10.
|
|
GAO Y, YONG S N, WANG J F. Effects of experimental warming on soil enzyme activities in different seasons of the alpine swamp meadow ecosystem on the Qinghai-Tibet Plateau. Ecological Science, 2023, 42(1): 1-10. (in Chinese)
|
[11] |
WU Q Q, YUE K, WANG X C, MA Y D, LI Y. Differential responses of litter decomposition to warming, elevated CO2, and changed precipitation regime. Plant and Soil, 2020, 455(1): 155-169.
|
[12] |
舒韦维, 陈琳, 刘世荣, 曾冀, 李华, 郑路, 陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报, 2020, 40(13): 4538-4545.
|
|
SHU W W, CHEN L, LIU S R, ZENG J, LI H, ZHENG L, CHEN W J. Effects of throughfall reduction on litter decomposition of Pinus massoniana plantation in subtropical China. Acta Ecologica Sinica, 2020, 40(13): 4538-4545. (in Chinese)
|
[13] |
杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响. 植物生态学报, 2021, 45(12): 1314-1328.
doi: 10.17521/cjpe.2021.0211
|
|
YANG D C, HU L, SONG X Y, WANG C T. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow. Chinese Journal of Plant Ecology, 2021, 45(12): 1314-1328. (in Chinese)
|
[14] |
LYU M K, NIE Y Y, GIARDINA C P, VADEBONCOEUR M A, REN Y B, FU Z Q, WANG M H, JIN C S, LIU X M, XIE J S. Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests. Functional Ecology, 2019, 33(11): 2226-2238.
|
[15] |
BERDUGO M, DELGADO-BAQUERIZO M, SOLIVERES S, HERNÁNDEZ-CLEMENTE R, ZHAO Y C, GAITÁN J J, GROSS N, SAIZ H, MAIRE V, LEHMANN A, RILLIG M C, SOLÉ R V, MAESTRE F T. Global ecosystem thresholds driven by aridity. Science, 2020, 367(6479): 787-790.
doi: 10.1126/science.aay5958
pmid: 32054762
|
[16] |
AVERILL C, WARING B G, HAWKES C V. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Global Change Biology, 2016, 22(5): 1957-1964.
doi: 10.1111/gcb.13219
pmid: 26748720
|
[17] |
ZHOU J G, ZHANG J F, LAMBERS H, WU J T, QIN G M, LI Y W, LI Y X, LI Z A, WANG J, WANG F M. Intensified rainfall in the wet season alters the microbial contribution to soil carbon storage. Plant and Soil, 2022, 476(1): 337-351.
|
[18] |
MURÚA J M, GAXIOLA A. Variability in terrestrial litter decomposition can be explained by nutrient allocation strategies among soil decomposer communities. Functional Ecology, 2023, 37(6): 1642-1652.
|
[19] |
LIU L L, SAYER E J, DENG M F, LI P, LIU W X, WANG X, YANG S, HUANG J S, LUO J, SU Y J, GRÜNZWEIG J M, JIANG L, HU S J, PIAO S L. The grassland carbon cycle: Mechanisms, responses to global changes, and potential contribution to carbon neutrality. Fundamental Research, 2022, 3(2): 209-218.
|
[20] |
LE PROVOST G, SCHENK N V, PENONE C, THIELE J, WESTPHAL C, ALLAN E, AYASSE M, BLÜTHGEN N, BOEDDINGHAUS R S, BOESING A L, BOLLIGER R, BUSCH V, FISCHER M, GOSSNER M M, HÖLZEL N, JUNG K, KANDELER E, KLAUS V H, KLEINEBECKER T, LEIMER S, MARHAN S, MORRIS K, MÜLLER S, NEFF F, NEYRET M, OELMANN Y, PEROVIĆ D J, PETER S, PRATI D, RILLIG M C, SAIZ H, SCHÄFER D, SCHERER-LORENZEN M, SCHLOTER M, SCHÖNING I, SCHRUMPF M, STECKEL J, STEFFAN-DEWENTER I, TSCHAPKA M, VOGT J, WEINER C, WEISSER W, WELLS K, WERNER M, WILCKE W, MANNING P. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nature Ecology & Evolution, 2023, 7(2): 236-249.
|
[21] |
ALLISON S D. Microbial drought resistance may destabilize soil carbon. Trends in Microbiology, 2023, 31(8): 780-787.
doi: 10.1016/j.tim.2023.03.002
pmid: 37059647
|
[22] |
QIU J. Land models put to climate test. Nature, 2014, 510: 16-17.
|
[23] |
LI Y, ZHOU Z X, LEI L J, RU J Y, SONG J, ZHONG M X, TIAN R, ZHANG A, ZHENG M M, HUI D F, WAN S Q. Asymmetric responses of soil respiration in three temperate steppes along a precipitation gradient in Northern China revealed by soil-monolith transplanting experiment. Agricultural and Forest Meteorology, 2020, 294: 108126.
|
[24] |
GERMAN D P, WEINTRAUB M N, GRANDY A S, LAUBER C L, RINKES Z L, ALLISON S D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 2011, 43(7): 1387-1397.
|
[25] |
SPOHN M, BERG B. Import and release of nutrients during the first five years of plant litter decomposition. Soil Biology and Biochemistry, 2023, 176: 108878.
|
[26] |
YANG Y, LIANG C, WANG Y Q, CHENG H, AN S S, CHANG S X. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration. Soil Biology and Biochemistry, 2020, 149: 107928.
|
[27] |
KING J Y, BRANDT L A, ADAIR E C. Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry, 2012, 111(1): 57-81.
|
[28] |
LUO W T, GRIFFIN-NOLAN R J, MA W, LIU B, ZUO X A, XU C, YU Q, LUO Y H, MARIOTTE P, SMITH M D, COLLINS S L, KNAPP A K, WANG Z W, HAN X G. Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology, 2021, 102(10): e03465.
|
[29] |
WANG J, LIU W X, LI P, JIA Z, DENG M F, YANG S, LIU L L. Long-term deepened snow cover alters litter layer turnover rate in temperate steppes. Functional Ecology, 2020, 34(5): 1113-1122.
|
[30] |
CANESSA R, VAN DEN BRINK L, BERDUGO M B, HÄTTENSCHWILER S, RIOS R S, SALDAÑA A, TIELBÖRGER K, BADER M Y. Trait functional diversity explains mixture effects on litter decomposition at the arid end of a climate gradient. Journal of Ecology, 2022, 110(9): 2219-2231.
|
[31] |
SANTONJA M, FERNANDEZ C, GAUQUELIN T, BALDY V. Climate change effects on litter decomposition: Intensive drought leads to a strong decrease of litter mixture interactions. Plant and Soil, 2015, 393(1): 69-82.
|
[32] |
SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798.
|
[33] |
MAXWELL T L, CANARINI A, BOGDANOVIC I, BÖCKLE T, MARTIN V, NOLL L, PROMMER J, SÉNECA J, SIMON E, PIEPHO H P, HERNDL M, PÖTSCH E M, KAISER C, RICHTER A, BAHN M, WANEK W. Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO2, warming, and drought. Global Change Biology, 2022, 28(7): 2425-2441.
|
[34] |
李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素. 植物生态学报, 2023, 47(9): 1310-1321.
doi: 10.17521/cjpe.2022.0176
|
|
LI B, ZHU W W, HAN C, YU H L, HUANG J Y. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes. Chinese Journal of Plant Ecology, 2023, 47(9): 1310-1321. (in Chinese)
doi: 10.17521/cjpe.2022.0176
|
[35] |
HOU E Q, LUO Y Q, KUANG Y W, CHEN C R, LU X K, JIANG L F, LUO X Z, WEN D Z. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11(1): 637.
|
[36] |
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, AHMED B, ALLISON S D, CRENSHAW C, CONTOSTA A R, CUSACK D, FREY S, GALLO M E, GARTNER T B, HOBBIE S E, HOLLAND K, KEELER B L, POWERS J S, STURSOVA M, TAKACS-VESBACH C, WALDROP M P, WALLENSTEIN M D, ZAK D R, ZEGLIN L H. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264.
doi: 10.1111/j.1461-0248.2008.01245.x
pmid: 18823393
|
[37] |
朱义族, 李雅颖, 韩继刚, 姚槐应. 水分条件变化对土壤微生物的影响及其响应机制研究进展. 应用生态学报, 2019, 30(12): 4323-4332.
doi: 10.13287/j.1001-9332.201912.031
|
|
ZHU Y Z, LI Y Y, HAN J G, YAO H Y. Effects of changes in water status on soil microbes and their response mechanism: A review. Chinese Journal of Applied Ecology, 2019, 30(12): 4323-4332. (in Chinese)
|
[38] |
DU L T, GONG F, ZENG Y J, MA L L, QIAO C L, WU H Y. Carbon use efficiency of terrestrial ecosystems in desert/grassland biome transition zone: A case in Ningxia Province, Northwest China. Ecological Indicators, 2021, 120: 106971.
|
[39] |
MANZONI S, TROFYMOW J A, JACKSON R B, PORPORATO A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 2010, 80(1): 89-106.
|