中国农业科学 ›› 2022, Vol. 55 ›› Issue (21): 4104-4117.doi: 10.3864/j.issn.0578-1752.2022.21.002
相玉婷1(),王晓龙1,胡新中1,*(
),任长忠2,郭来春2,李璐3
收稿日期:
2022-06-03
接受日期:
2022-08-15
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
胡新中
作者简介:
相玉婷,E-mail:基金资助:
XIANG YuTing1(),WANG XiaoLong1,HU XinZhong1,*(
),REN ChangZhong2,GUO LaiChun2,LI Lu3
Received:
2022-06-03
Accepted:
2022-08-15
Online:
2022-11-01
Published:
2022-11-09
Contact:
XinZhong HU
摘要:
【目的】探究不同品种间燕麦脂肪酶活性的差异机制,分析影响燕麦脂肪酶活性的内在因素,为筛选低脂肪酶优质品种提供理论依据。【方法】选取3个燕麦主产地的6个主栽品种为研究对象,测定其脂肪酶活性、营养指标、物理性状及农艺指标。通过相关性分析筛选与燕麦脂肪酶密切相关的指标,通过聚类分析将多个燕麦样品按脂肪酶活性分类,通过主成分分析将具有相关性的数据组转化为便于统计分析的综合变量,考察燕麦品种间的脂肪酶活性差异;结合灰色关联度与多元逐步回归的分析方法,得出各品种与理想品种的关联度,并以脂肪酶活性为因变量,拟合得出脂肪酶活性预测模型,筛选低脂肪酶活性优质品种。【结果】脂肪酶活性与粗脂肪含量呈显著正相关(r=0.32,P<0.05),且脂肪含量、不饱和脂肪酸含量、脂肪酶活性、酸值4个指标的变化趋势一致;脂肪酶活性与粗蛋白含量呈极显著正相关(r=0.46,P<0.01),且脂肪酶活性越高的品种,其位于31—43 kD的电泳条带所占百分比越大;脂肪酶活性与籽粒容重呈极显著负相关(r=-0.71,P<0.01);脂肪酶活性与生育期呈极显著正相关(r=0.37,P<0.01);经灰色关联度分析知白燕18号、迪燕1号与理想品种X0关联度较高,分别为0.951和0.883,属于低脂肪酶且高营养品种;经多元逐步回归,仅保留影响显著的容重与蛋白质含量作为自变量,建立脂肪酶活性预测模型Y(脂肪酶活性)=720.274-2.255×容重(g·L-1)+75.761×蛋白质含量(%),P<0.01,R 2为0.658。【结论】不同品种间燕麦脂肪酶活性差异明显,脂肪含量、蛋白质含量、容重、生育期是燕麦脂肪酶活性的主要影响因素,灰色关联法和逐步回归分析相结合建立的优质品种筛选与脂肪酶活性预测模型,可以有效地对燕麦品种进行综合评价,并优选出低脂肪酶活性品种。
相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117.
XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality[J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
表2
不同品种燕麦品质指标测定结果"
品种 Variety | 营养指标(干基)Nutritive index (dry) | 物理指标Physical index | 脂肪酶活性 Lipase activity (µmol·h-1·g-1) | 生育期 Period of duration (d) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
粗脂肪 Crude lipid (%) | 粗蛋白 Crude protein (%) | 粗淀粉 Crude starch (%) | β-葡聚糖 β-glucan (%) | 千粒重 Thousand seed weight (g) | 容重 Test weight (g·L-1) | |||||||||||||||||||
平均值 Mean | 变幅 Range | 变异系数SV | 平均值 Mean | 变幅 Range | 变异系数SV | 平均值 Mean | 变幅 Range | 变异系数SV | 平均值 Mean | 变幅 Range | 变异系数SV | 平均值 Mean | 变幅 Range | 变异系数SV | 平均值 Mean | 变幅 Range | 变异 系数 SV | 平均值 Mean | 变幅 Range | 变异系数SV | 平均值 Mean | 变幅 Range | 变异系数SV | |
迪燕1号 Diyan 1 | 6.62a | 6.17- 6.99 | 3.92 | 14.44ab | 14.20- 14.70 | 1.04 | 61.47b | 60.20- 62.37 | 1.40 | 4.06a | 3.73- 4.39 | 4.93 | 27.11c | 25.64- 27.97 | 2.95 | 720.57ab | 695.25- 740.05 | 2.49 | 168.31ab | 83.23- 235.64 | 39.10 | 99b | 82- 108 | 12.70 |
魏都莜5号 Weiduyou 5 | 6.55a | 6.16- 6.97 | 4.48 | 14.87bc | 14.23- 15.31 | 3.03 | 60.37ab | 58.53- 62.01 | 1.97 | 4.41b | 4.23- 4.60 | 3.17 | 23.92b | 22.49- 26.13 | 5.48 | 729.24b | 712.00- 748.40 | 1.90 | 206.02abc | 122.29- 334.00 | 43.62 | 89ab | 76- 101 | 12.20 |
晋燕17号 Jinyan 17 | 6.12a | 5.41- 6.57 | 6.80 | 14.99c | 14.39- 15.81 | 3.27 | 59.38a | 58.40 -60.10 | 0.98 | 4.82c | 4.32- 5.22 | 6.85 | 24.50b | 23.51- 24.87 | 2.00 | 727.19b | 708.65- 741.83 | 1.87 | 220.91bc | 86.90- 310.93 | 45.71 | 91ab | 79- 104 | 12.02 |
张莜9号 Zhangyou 9 | 6.54a | 5.79- 7.71 | 11.65 | 14.58bc | 13.63- 15.30 | 4.80 | 60.45ab | 58.69- 62.75 | 2.45 | 4.73c | 4.18- 5.51 | 12.26 | 26.73c | 25.62- 27.95 | 2.62 | 706.26a | 670.30- 726.65 | 3.27 | 274.90c | 161.01- 387.16 | 34.09 | 101b | 93- 109 | 6.90 |
坝莜18号 Bayou18 | 6.68a | 5.79- 8.25 | 15.13 | 14.11a | 13.37- 14.65 | 3.83 | 61.59b | 57.30- 67.21 | 6.77 | 4.81c | 4.61- 5.03 | 3.33 | 26.43c | 24.10- 29.44 | 7.98 | 703.10a | 659.00- 739.10 | 4.77 | 163.20ab | 84.24- 303.46 | 67.40 | 99b | 88- 104 | 8.11 |
白燕18号 Baiyan18 | 6.19a | 5.02- 6.73 | 10.53 | 14.82bc | 14.58- 15.20 | 1.21 | 60.46ab | 58.76- 61.76 | 1.90 | 4.78c | 4.51- 5.39 | 6.07 | 21.27a | 19.93- 21.81 | 2.82 | 768.66c | 764.70- 774.65 | 0.42 | 120.74a | 77.83- 168.11 | 28.82 | 83a | 66- 100 | 17.68 |
表3
燕麦品种脂肪含量及其性质指标"
产地 Planting region | 品种 Variety | 脂肪含量 Lipid content (%) | 不饱和脂肪酸含量 Unsaturated fatty acid content (%) | 酸值 Acid value (mg KOH/100 g) | 脂肪酶活性 Lipase activity (µmol·h-1·g-1) |
---|---|---|---|---|---|
山西右玉 Youyu, Shanxi | 迪燕1号 Diyan 1 | 6.83±0.13f | 78.30±0.16cd | 50.67±0.44j | 185.74±13.91d |
魏都莜5号 Weiduyou 5 | 6.74±0.15f | 78.37±0.23cd | 43.63±0.20f | 126.35±6.04b | |
晋燕17号 Jinyan 17 | 6.36±0.19cde | 78.74±0.11de | 54.24±0.40m | 265.24±11.04f | |
张莜9号 Zhangyou9 | 6.25±0.15cd | 78.78±0.13de | 47.46±0.19h | 171.29±8.91c | |
坝莜18号 Bayou18 | 5.65±0.26b | 77.75±0.31a | 38.73±0.24c | 87.15±2.67a | |
白燕18号 Baiyan18 | 6.65±0.08ef | 78.24±0.31bc | 48.36±0.08i | 161.80±6.60c | |
平均值 Mean | 6.45±0.36 | 78.34±0.36 | 47.18±5.11 | 166.26±56.97 | |
甘肃通渭 Tongwei, Gansu | 迪燕1号 Diyan1 | 6.34±0.19cd | 78.36±0.43cd | 46.06±0.25g | 233.59±1.93e |
魏都莜5号 Weiduyou5 | 6.21±0.06c | 78.35±0.12cd | 53.12±0.23l | 322.90±13.22h | |
晋燕17号 Jinyan17 | 6.38±0.21cde | 78.51±0.01cde | 56.72±0.61n | 308.62±2.09g | |
张莜9号 Zhangyou9 | 5.86±0.06b | 77.85±0.11ab | 52.22±0.18k | 386.98±0.24i | |
坝莜18号 Bayou18 | 8.01±0.22h | 78.74±0.05de | 61.14±1.25o | 309.76±5.67g | |
白燕18号 Baiyan18 | 6.55±0.12def | 77.53±0.22a | 41.22±0.30e | 117.83±8.20b | |
平均值 Mean | 6.56±0.71 | 78.22±0.43 | 51.75±6.77 | 279.95±87.75 | |
河北张北 Zhangbei, Hebei | 迪燕1号 Diyan1 | 6.69±0.13f | 78.51±0.18cde | 40.47±0.14d | 85.60±4.05a |
魏都莜5号 Weiduyou5 | 6.70±0.25f | 78.96±0.21e | 45.66±0.31h | 168.80±2.05c | |
晋燕17号 Jinyan17 | 5.62±0.24b | 78.45±0.24cd | 37.93±0.08b | 88.86±2.84a | |
张莜9号 Zhangyou9 | 7.52±0.22g | 78.65±0.15cde | 54.60±0.29m | 266.43±2.96f | |
坝莜18号 Bayou18 | 6.19±0.08c | 77.75±0.02a | 40.43±0.18d | 92.69±2.22a | |
白燕18号 Baiyan18 | 5.34±0.28a | 77.67±0.18a | 36.02±0.07a | 82.58±4.53a | |
平均值 Mean | 6.34±0.77 | 78.30±0.50 | 42.52±6.34 | 130.84±69.60 |
表5
燕麦品种与理想品种的关联系数及关联度"
指标 Indicator | 迪燕1号 Diyan 1 | 魏都莜5号 Weiduyou 5 | 晋燕17号 Jinyan 17 | 张莜9号 Zhangyou 9 | 坝莜18号 Bayou 18 | 白燕18号 Baiyan 18 |
---|---|---|---|---|---|---|
蛋白Protein | 0.992 | 0.992 | 0.991 | 0.977 | 0.991 | 0.999 |
脂肪Lipid | 0.999 | 0.995 | 0.988 | 0.991 | 0.999 | 0.995 |
淀粉Starch | 0.996 | 0.955 | 0.932 | 0.917 | 0.984 | 0.999 |
β-葡聚糖β-glucan | 0.989 | 0.992 | 0.997 | 0.993 | 1.000 | 1.000 |
容重Test weight | 0.569 | 0.512 | 0.474 | 0.356 | 0.556 | 0.839 |
千粒重Thousand seed weight | 0.999 | 0.944 | 0.948 | 0.963 | 0.998 | 0.924 |
生育期Period of duration | 0.932 | 0.903 | 0.906 | 0.985 | 0.906 | 0.882 |
脂肪酶活性Lipase activity | 0.584 | 0.456 | 0.422 | 0.334 | 0.593 | 0.971 |
关联度Correlation | 0.883 | 0.844 | 0.832 | 0.814 | 0.878 | 0.951 |
排名Rank | 2 | 4 | 5 | 6 | 3 | 1 |
表7
回归模型验证"
品种 Variety | 脂肪酶活性测定值Measurement value of lipase activity (µmol·h-1·g-1) | 排序 Rank | 脂肪酶活性预测值 Predictive value of lipase activity (µmol·h-1·g-1) | 排序 Rank | 误差 Error (%) |
---|---|---|---|---|---|
迪燕1号Diyan 1 | 168.31 | 5 | 189.20 | 5 | 12.41 |
魏都莜5号Weiduyou 5 | 206.01 | 3 | 202.64 | 4 | 1.64 |
晋燕17号Jinyan 17 | 220.91 | 2 | 215.85 | 2 | 2.29 |
张莜9号Zhangyou 9 | 274.90 | 1 | 232.59 | 1 | 15.39 |
坝莜18号Bayou 18 | 163.20 | 4 | 203.58 | 3 | 24.74 |
白燕18号Baiyan 18 | 120.77 | 6 | 109.72 | 6 | 9.15 |
[1] | 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013. |
REN C Z, HU Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013. (in Chinese) | |
[2] | 周素梅, 申瑞玲. 燕麦的营养及其加工利用. 北京: 化学工业出版社, 2009. |
ZHOU S M, SHEN R L. Nutrition and Processing and Utilization of Oats. Beijing: Chemical Industry Press, 2009. (in Chinese) | |
[3] | 胡新中, 魏益民, 任长忠. 燕麦品质与加工. 北京: 科学出版社, 2009. |
HU X Z, WEI Y M, REN C Z. Oat Quality and Processing. Beijing: Science Press, 2009. (in Chinese) | |
[4] | 戚向阳, 曹少谦, 刘合生, 陈伟. 不同品种燕麦的油脂组成及与其它营养物质相关性研究. 中国食品学报, 2014, 14(5): 63-71. |
QI X Y, CAO S Q, LIU H S, CHEN W. Studies on the lipid composition of different oat varieties and its relationship with other nutrients. Journal of Chinese Institute of Food Science and Technology, 2014, 14(5): 63-71. (in Chinese) | |
[5] | JUNG H, MOON S J. Purification,distribution, and characterization activity of lipase from oat seeds (Avena sativa L.). Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(6): 639-645. |
[6] | ANGAJALA G, PAVAN P, SUBASHINI R. Lipases: An overview of its current challenges and prospective in the revolution of biocatalysis. Biocatalysis and Agricultural Biotechnology, 2016, 7: 257-270. |
[7] | 李兴军. 谷物及其加工品脂肪酶解的生化机制. 粮食科技与经济, 2012, 37(6): 55-58. |
LI X J. Enzymic degradation of lipids in cereal and their products. Grain Science and Technology and Economy, 2012, 37(6): 55-58. (in Chinese) | |
[8] | 林伟静, 吴广枫, 李春红, 王燕, 周素梅. 品种与环境对我国裸燕麦营养品质的影响. 作物学报, 2011, 37(6): 1087-1092. |
LIN W J, WU G F, LI C H, WANG Y, ZHOU S M. Effects of cultivar and environment on nutritional quality of Chinese naked oats. Acta Agronomica Sinica, 2011, 37(6): 1087-1092. (in Chinese) | |
[9] | 曹品豹. 燕麦油脂及在燕麦发芽过程中的变化和微胶囊化制备工艺[D]. 武汉: 华中农业大学, 2009. |
CAO P B. Lipids of oat, their changes during germination and preparation technics of microencapsulation[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese) | |
[10] | ZIEGLER V, FERREIRA C D, DA SILVA J, ZAVAREZE E D R, DIAS A R G, OLIVEIRA M D, ELIAS M C. Heat-moisture treatment of oat grains and its effects on lipase activity and starch properties. Starch-Stärke, 2018, 70(1/2): 1700010. |
[11] | GAO Y C, WANG L L, QIU J, BAI G L, LI Z G. Effects of different lipase inactivation treatments on physicochemical properties of naked oat globulins. Cereal Chemistry, 2016, 93(3): 248-254. |
[12] | 胡新中, 罗勤贵, 欧阳韶晖, 郑建梅, 张国权. 裸燕麦酶活性抑制方法及品质比较. 中国粮油学报, 2006(5): 46-50. |
HU X Z, LUO Q G, OUYANG S H, ZHENG J M, ZHANG G Q. Comparison of naked oat stabilizing methods and their quality effect. Journal of the Chinese Cereals and Oils Association, 2006(5): 46-50. (in Chinese) | |
[13] | 刘婷玉, 佟立涛, 王丽丽, 周素梅, 刘丽娅. 燕麦籽粒不同灭酶方式对燕麦乳稳定性和营养物质的影响. 中国粮油学报, 2021, 36(10): 22-28. |
LIU T Y, TONG L T, WANG L L, ZHOU S M, LIU L Y. Effects of different enzyme inactivating modes on the stability and nutrients of oat milk. Journal of the Chinese Cereals and Oils Association, 2021, 36(10): 22-28. (in Chinese) | |
[14] | 甄红敏, 栾广忠, 胡新中, 张培培, 徐超, 郑建梅. 灭酶方法对燕麦淀粉和蛋白质体外消化特性的影响. 麦类作物学报, 2011, 31(3): 475-479. |
ZHEN H M, LUAN G Z, HU X Z, ZHANG P P, XU C, ZHENG J M. Effects of different lipase deactivated treatments on in vitro starch and protein digestibility of oat whole meal. Journal of Triticeae Crops, 2011, 31(3): 475-479. (in Chinese) | |
[15] | 倪香艳, 顾军强, 钟葵, 佟立涛, 刘丽娅, 周素梅. 燕麦品种的品质性状及聚类分析. 中国粮油学报, 2016, 31(10): 18-24. |
NI X Y, GU J Q, ZHONG K, TONG L T, LIU L Y, ZHOU S M. Quality characteristics of oat cultivars and cluster analysis. Journal of the Chinese Cereals and Oils Association, 2016, 31(10): 18-24. (in Chinese) | |
[16] | KWON D Y, RHEE J S. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Journal of the American Oil Chemists’ Society, 1986, 63(1): 89-92. |
[17] | 胡新中. 燕麦的酶活性及其食品加工中抑制工艺研究[D]. 杨凌: 西北农林科技大学, 2007. |
HU X Z. Oat enzyme activity and its deactivation for food processing[D]. Yangling: Northwest A&F University, 2007. (in Chinese) | |
[18] | 卢丹, 张文婷, 赵武奇, 胡新中, 李小平. 超临界CO2萃取燕麦油工艺研究. 中国油脂, 2018, 43(4): 1-6. |
LU D, ZHANG W T, ZHAO W Q, HU X Z, LI X P. Supercritical CO2 extraction of oat oil. China Oils and Fats, 2018, 43(4): 1-6. (in Chinese) | |
[19] | 石珂心, 赵武奇, 谷如祥, 张文婷. 超临界CO2萃取樱桃仁油及GC-MS分析. 中国粮油学报, 2016, 31(1): 60-64+69. |
SHI K X, ZHAO W Q, GU R X, ZHANG W T. The supercritical carbon dioxide fluid extraction of cherry kernel oil and analysis by GC-MS. Journal of the Chinese Cereals and Oils Association, 2016, 31(1): 60-64+69. (in Chinese) | |
[20] | 刘建垒. 燕麦蛋白的提取及其亚基与功能特性研究[D]. 晋中: 山西农业大学, 2013. |
LIU J L. Oat protein isolatie: Extraction, protein subunits and functional properties[D]. Jinzhong: Shanxi Agricultural University, 2013. (in Chinese) | |
[21] | LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680-685. |
[22] | 王建芳, 高山, 牟德华. 基于主成分分析和聚类分析的不同品种燕麦品质评价. 食品工业科技, 2020, 41(13): 85-91. |
WANG J F, GAO S, MOU D H. Quality evaluation of different varieties of oat based on principal components analysis and cluster analysis. Science and Technology of Food Industry, 2020, 41(13): 85-91. (in Chinese) | |
[23] | 王青, 戴思兰, 何晶, 季玉山, 王朔. 灰色关联法和层次分析法在盆栽多头小菊株系选择中的应用. 中国农业科学, 2012, 45(17): 3653-3660. |
WANG Q, DAI S L, HE J, JI Y S, WANG S. Application of grey correlation analysis and AHP method in selection of potted Chrysanthemum. Scientia Agricultura Sinica, 2012, 45(17): 3653-3660. (in Chinese) | |
[24] | 李诗炜. 熟化谷物粉在储藏过程中的氧化及其评价指标分析[D]. 无锡: 江南大学, 2017. |
LI S W. Analysis of oxidation and evaluation indexes of instant cereal flours during storage[D]. Wuxi: Jiangnan University, 2017. (in Chinese) | |
[25] | MIRMOGHTADAIE L, KADIVAR M, SHAHEDI M. Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chemistry, 2009, 114(1): 127-131. |
[26] | 管骁, 姚惠源. 燕麦麸蛋白的组成及功能性质研究. 食品科学, 2006, 27(7): 72-76. |
GUAN X, YAO H Y. Composition and functional properties of oat bran protein. Food Science, 2006, 27(7): 72-76. (in Chinese) | |
[27] | URQUAHART A A, ALTOSAAR I, MATLASHEWSKI G J. Localization of lipase activity in oat grains and milled oat fractions. Cereal Chemistry, 1983, 60(2): 181-183. |
[28] | KUMAR L, SEHRAWAT R, KONG Y Z. Oat proteins: A perspective on functional properties. LWT- Food Science and Technology, 2021, 152: 112307. |
[29] | YU C W, ZHENG L F, CHENG M Y, YU X Y, WANG S Y, FAN Y W, DENG Z Y. Purification, identification, characterization and catalytic mechanism of two lipases from rice bran (Oryza sativa). LWT- Food Science and Technology, 2021, 140: 110693. |
[30] | 车海先, 李海玉. 玉米容重影响因素浅析. 粮食与食品工业, 2011, 18(1): 56-58+61. |
CHE H X, LI H Y. Analysis of influencing factors on maize test weight. Cereal & Food Industry, 2011, 18(1): 56-58+61. (in Chinese) | |
[31] | PETERSON D M. Lipase activity and lipid metabolism during oat malting. Cereal Chemistry, 1999, 76: 159-163. |
[32] | 任长忠, 杨才. 中国燕麦品种志. 北京: 中国农业出版社, 2018. |
REN C Z, YANG C. Oat Varieties of China. Beijing: China Agriculture Press, 2018. (in Chinese) | |
[33] | 李涵鑫, 李小平, 马蓁, 李俊俊, 胡新中, 任长忠. 燕麦籽粒特性与理化及加工品质特性的关系. 麦类作物学报, 2015, 35(4): 499-507. |
LI H X, LI X P, MA Z, LI J J, HU X Z, REN C Z. Relationships between oat kernel, physicochemical and processing parameters. Journal of Triticeae Crops, 2015, 35(4): 499-507. (in Chinese) | |
[34] | HU X Z, WEI Y M, REN C Z, ZHAO J. Relationship between kernel size and shape and lipase activity of naked oat before and after pearling treatment. Journal of the Science of Food and Agriculture, 2009, 89(8): 1424-1427. |
[35] | MEL R, MALALGODA M. Oat protein as a novel protein ingredient: Structure, functionality, and factors impacting utilization. Cereal Chemistry, 2021, 99(1): 21-36. |
[36] | 赵春, 宁堂原, 焦念元, 韩宾, 李增嘉. 基因型与环境对小麦籽粒蛋白质和淀粉品质的影响. 应用生态学报, 2005(7): 1257-1260. |
ZHAO C, NING T Y, JIAO N Y, HAN B, LI Z J. Effects of genotype and environment on protein and starch quality in wheat grain. Chinese Journal of Applied Ecology, 2005(7): 1257-1260. (in Chinese) | |
[37] | 金欣欣, 姚艳荣, 贾秀领, 姚海坡, 申海平, 崔永增, 李谦. 基因型和环境对小麦产量、品质和氮素效率的影响. 作物学报, 2019, 45(4): 635-644. |
JIN X X, YAO Y R, JIA X L, YAO H P, SHEN H P, CUI Y Z, LI Q. Effects of genotype and environment on wheat yield, quality and nitrogen use efficiency. Acta Agronomica Sinica, 2019, 45(4): 635-644. (in Chinese) | |
[38] | 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳, 肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012, 45(9): 1703-1713. |
WU H, HOU L L, ZHOU Y F, FAN Z C, SHI J Y, A L Y, ROU Z, ZHANG J S. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Scientia Agricultura Sinica, 2012, 45(9): 1703-1713. (in Chinese) |
[1] | 刘丰,蒋佳丽,周琴,蔡剑,王笑,黄梅,仲迎鑫,戴廷波,曹卫星,姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析[J]. 中国农业科学, 2022, 55(19): 3723-3737. |
[2] | 苏媛媛,张德权,古明辉,张春娟,李少博,郑晓春,陈丽. 不同来源ATP表征冷鲜羊肉新鲜度[J]. 中国农业科学, 2022, 55(19): 3841-3853. |
[3] | 冯俊杰,赵文达,张新全,刘英杰,袁帅,董志晓,熊毅,熊艳丽,凌瑶,马啸. 引种日本多花黑麦草标准品种DUS性状变异分析及应用[J]. 中国农业科学, 2022, 55(12): 2447-2460. |
[4] | 张婷,王根平,罗焱杰,李琳,高翔,程汝宏,师志刚,董立,张喜瑞,杨伟红,许立闪. 色差分析在优质小米选育中的应用[J]. 中国农业科学, 2021, 54(5): 901-908. |
[5] | 李凯峰,尹玉和,王琼,林团荣,郭华春. 不同马铃薯品种挥发性风味成分及代谢产物相关性分析[J]. 中国农业科学, 2021, 54(4): 792-803. |
[6] | 陶晡, 齐永志, 屈赟, 曹志艳, 赵绪生, 甄文超. 基于增强回归树的海河平原小麦赤霉病预测模型构建与验证[J]. 中国农业科学, 2021, 54(18): 3860-3870. |
[7] | 张斌斌,蔡志翔,沈志军,严娟,马瑞娟,俞明亮. 观赏桃种质资源表型性状多样性评价[J]. 中国农业科学, 2021, 54(11): 2406-2418. |
[8] | 柳艳霞,王振宇,郑晓春,朱瑶迪,陈丽,张德权. 基于品质指标预测北京烤鸭的中心温度[J]. 中国农业科学, 2020, 53(8): 1655-1663. |
[9] | 项方林,李鑫格,马吉锋,刘小军,田永超,朱艳,曹卫星,曹强. 基于冠层时序植被指数的冬小麦单产预测[J]. 中国农业科学, 2020, 53(18): 3679-3692. |
[10] | 朱子健,陈思雨,粟俊,陶永胜. 刺葡萄酒酒精发酵过程中氨基酸组成与果香酯类物质 生成的关联分析[J]. 中国农业科学, 2020, 53(11): 2272-2284. |
[11] | 方慧婷,蒙继华,程志强. 基于遥感与作物模型的土壤速效养分时空变异分析[J]. 中国农业科学, 2019, 52(3): 478-490. |
[12] | 富丽霞,马涛,刁其玉,成述儒,宋雅喆,孙卓琳. 肉羊精料可代谢蛋白质预测模型的建立[J]. 中国农业科学, 2019, 52(3): 539-549. |
[13] | 何俊,田昕竹,王学东,刘彬,李宁,郑涵,孟楠,陈世宝. 基于根微形态测定土壤Zn对大麦的毒性阈值及其预测模型[J]. 中国农业科学, 2017, 50(7): 1263-1270. |
[14] | 王阳,王文辉,贾晓辉,佟伟,王志华,杨晓龙. 梨不同品种果实冻藏品质性状分析与适宜品种筛选[J]. 中国农业科学, 2017, 50(17): 3400-3412. |
[15] | 徐晴,许甫超,董静,董建辉,秦丹丹,鲁梦莹,李梅芳. 小麦氮素利用效率的基因型差异及相关特性分析[J]. 中国农业科学, 2017, 50(14): 2647-2657. |
|