中国农业科学 ›› 2022, Vol. 55 ›› Issue (5): 874-889.doi: 10.3864/j.issn.0578-1752.2022.05.004
蒋晶晶(),周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞(
),杨建昌
收稿日期:
2021-04-28
接受日期:
2021-06-21
出版日期:
2022-03-01
发布日期:
2022-03-08
通讯作者:
顾骏飞
作者简介:
蒋晶晶,E-mail: 基金资助:
JIANG JingJing(),ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei(
),YANG JianChang
Received:
2021-04-28
Accepted:
2021-06-21
Online:
2022-03-01
Published:
2022-03-08
Contact:
JunFei GU
摘要:
【目的】探究不同栽培措施对超级稻强、弱势粒品质及淀粉特性的影响,以期为改善稻米品质即水稻强、弱势粒品质的协同提高提供理论指导和实践依据。【方法】以超级稻甬优2640和武运粳24为供试材料,大田种植条件下,设置氮空白区(0N)、当地农民习惯(LFP)、优化栽培管理1(T1)和优化栽培管理2(T2)4个处理,每个处理设置3个重复。试验裂区设计,以处理为主区,品种为副区(小区)。2018年测定全穗籽粒外观、加工、蒸煮食味品质和RVA特征值,在此基础之上,2019年增加强、弱势粒淀粉颗粒的扫描电镜观察、结晶度和红外光谱分布测定。【结果】(1)在稻米品质上,与强势粒相比,弱势粒加工品质更优,而外观品质更劣,蛋白质含量和硬度显著提高,直链淀粉含量、胶稠度和黏度显著下降。(2)在淀粉特性上,与强势粒相比,弱势粒的淀粉颗粒较小且破损严重,结晶度、1 045/1 022 cm-1值显著提高,峰值黏度、热浆黏度、崩解值、最终黏度显著下降,消解值和糊化温度显著上升。(3)与当地农民习惯LFP相比,通过优化栽培管理T1和T2,两品种强、弱势粒加工品质与外观品质显著提高,蛋白质含量及直链淀粉含量显著下降,胶稠度显著上升,蒸煮食味品质变优;淀粉特性也都有所改善,相对结晶度降低,淀粉表层有序性下降,其中弱势粒品质及淀粉特性提升较为明显。【结论】弱势粒稻米品质显著劣于强势粒,优化栽培措施能够在提高产量的基础上通过改善弱势粒品质实现全穗籽粒品质的提升。
蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889.
JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice[J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
表1
不同栽培措施下两品种水稻全穗籽粒强、弱势粒的外观及加工品质"
年份 Year | 品种 Variety | 粒位 Grain position | 处理 Treatment | 外观品质 Appearance quality | 加工品质 Milling quality | ||||
---|---|---|---|---|---|---|---|---|---|
垩白面积 Chalkiness area (%) | 垩白粒率 Chalky rice rate (%) | 垩白度 Chalkiness (%) | 糙米率 Brown rice percentage (%) | 精米率 Milled rice percentage (%) | 整精米率 Head rice percentage (%) | ||||
2018 | 甬优2640 Y2640 | — | 0N | 24.87±0.10c | 25.53±0.14c | 6.86±0.10c | 81.47±0.04c | 73.78±0.04c | 68.76±0.04c |
— | LFP | 27.74±0.06a | 30.21±0.20a | 8.35±0.14a | 81.78±0.11b | 74.57±0.11b | 70.53±0.06b | ||
— | T1 | 26.58±0.17b | 27.41±0.25b | 7.56±0.17b | 82.55±0.06a | 74.58±0.06a | 71.48±0.03a | ||
— | T2 | 26.26±0.07b | 25.89±0.13c | 6.80±0.11c | 82.63±0.07a | 75.13±0.07a | 71.59±0.07a | ||
武运粳24 W24 | — | 0N | 21.52±0.03d | 26.69±0.13c | 6.34±0.06c | 81.52±0.10d | 75.70±0.10d | 66.52±0.01d | |
— | LFP | 24.68±0.11a | 36.89±0.16a | 7.63±0.11a | 81.67±0.03c | 76.18±0.03c | 70.69±0.10c | ||
— | T1 | 23.91±0.08b | 34.25±0.07b | 7.16±0.08b | 84.98±0.06b | 77.28±0.06b | 71.33±0.04b | ||
— | T2 | 22.97±0.17c | 26.69±0.17c | 6.13±0.14c | 85.17±0.01a | 77.82±0.01a | 71.95±0.07a | ||
2019 | 甬优2640 Y2640 | 强势粒 Superior grain | 0N | 16.46±0.14c | 20.30±0.38c | 6.21±0.04c | 80.71±0.11b | 72.99±0.09c | 66.44±0.08c |
LFP | 22.80±0.25a | 25.58±0.30a | 7.92±0.08a | 80.78±0.08b | 74.15±0.14b | 67.19±0.08b | |||
T1 | 20.74±0.16b | 24.21±0.15b | 7.18±0.08b | 81.42±0.13a | 74.40±0.10ab | 67.58±0.07a | |||
T2 | 20.24±0.13b | 23.31±0.22b | 7.04±0.02b | 81.57±0.08a | 74.58±0.06a | 67.91±0.12a | |||
弱势粒 Inferior grain | 0N | 29.82±0.23c | 29.87±0.42c | 7.42±0.04d | 83.60±0.11c | 75.58±0.09b | 66.93±0.11c | ||
LFP | 33.26±0.15a | 35.55±0.18a | 9.13±0.15a | 83.93±0.05b | 76.84±0.18b | 68.18±0.08b | |||
T1 | 31.30±0.34b | 33.77±0.14b | 8.49±0.06b | 84.36±0.04a | 77.20±0.08a | 68.73±0.04a | |||
T2 | 30.20±0.11c | 33.48±0.08b | 7.99±0.04c | 84.50±0.04a | 77.42±0.08a | 68.91±9.05a | |||
武运粳24 W24 | 强势粒 Superior grain | 0N | 14.52±0.23d | 22.87±0.99d | 5.48±0.06d | 80.99±0.09b | 73.22±0.06c | 66.93±0.06c | |
LFP | 20.64±0.08a | 31.51±0.07a | 6.94±0.07a | 81.30±0.08b | 73.72±0.11b | 68.18±0.10b | |||
T1 | 18.59±0.53b | 28.66±0.42b | 6.44±0.02b | 82.12±0.08a | 74.23±0.11a | 68.73±0.08a | |||
T2 | 17.15±0.16c | 25.90±0.08c | 5.81±0.11c | 82.43±0.09a | 74.36±0.11a | 68.91±0.03a | |||
弱势粒 Inferior grain | 0N | 26.56±0.42b | 30.77±0.30d | 6.92±0.09d | 83.87±0.13d | 77.39±0.09b | 69.91±0.11c | ||
LFP | 29.76±0.56a | 40.32±0.06a | 8.30±0.05a | 84.25±0.06c | 77.76±0.18b | 72.09±0.08b | |||
T1 | 28.06±0.08b | 38.32±0.18b | 7.67±0.07b | 85.54±0.05b | 78.54±0.08a | 72.61±0.04a | |||
T2 | 27.24±0.30b | 35.77±0.11c | 7.17±0.09c | 85.92±0.06a | 78.83±0.08a | 72.83±9.05a |
表2
不同栽培措施下两品种水稻全穗籽粒和强、弱势粒的蒸煮食味品质和产量"
年份 Year | 品种 Variety | 粒位 Grain position | 处理 Treatment | 蛋白质含量 Protein content (%) | 直链淀粉含量 Amylose content (%) | 胶稠度 Gel consistency (mm) | 产量 Grain yield (t·hm-2) |
---|---|---|---|---|---|---|---|
2018 | 甬优2640 Y2640 | — | 0N | 8.68±0.11c | 16.13±0.17a | 69.32±0.14a | 6.98±0.11d |
— | LFP | 11.11±0.14a | 15.16±0.23b | 66.98±0.10c | 10.53±0.06c | ||
— | T1 | 10.58±0.08b | 14.78±0.07b | 67.56±0.08b | 11.27±0.08b | ||
— | T2 | 10.23±0.04b | 14.62±0.03b | 67.73±0.18b | 12.22±0.17a | ||
武运粳24 W24 | — | 0N | 8.22±0.14c | 16.52±0.17a | 72.56±0.06a | 5.75±0.16d | |
— | LFP | 10.74±0.06a | 16.03±0.04ab | 68.21±0.14c | 9.43±0.07c | ||
— | T1 | 9.48±0.17b | 15.73±0.10bc | 70.65±0.21b | 10.1±0.14b | ||
— | T2 | 9.52±0.03b | 15.41±0.20c | 70.69±0.13b | 10.97±0.24a | ||
2019 | 甬优2640 Y2640 | 强势粒 Superior grain | 0N | 6.44±0.15d | 19.76±0.11a | 73.91±0.30a | 7.06±0.08d |
LFP | 9.14±0.01a | 17.36±0.14b | 70.47±0.16c | 11.93±0.10c | |||
T1 | 8.61±0.06b | 17.31±0.04b | 71.15±0.15bc | 12.52±0.11b | |||
T2 | 8.20±0.07c | 16.32±0.05c | 71.50±0.07b | 13.25±0.21a | |||
弱势粒 Inferior grain | 0N | 10.47±0.16d | 14.45±0.16a | 67.21±0.08a | |||
LFP | 13.52±0.06a | 12.31±0.07b | 63.12±0.05c | ||||
T1 | 12.82±0.09b | 12.30±0.08b | 63.93±0.08b | ||||
T2 | 12.30±0.08c | 11.32±0.06c | 64.23±0.15b | ||||
武运粳24 W24 | 强势粒 Superior grain | 0N | 6.10±0.03d | 20.23±0.15a | 77.21±0.35a | 5.81±0.23d | |
LFP | 8.92±0.08a | 17.77±0.16b | 72.35±0.30c | 9.30±0.07c | |||
T1 | 8.55±0.01b | 17.92±0.08b | 73.32±0.14bc | 10.19±0.11b | |||
T2 | 8.10±0.06c | 16.39±0.21c | 73.73±0.06b | 10.88±0.16a | |||
弱势粒 Inferior grain | 0N | 10.07±0.08d | 14.93±0.08a | 69.33±0.28a | |||
LFP | 12.92±0.08a | 12.71±0.08b | 64.47±0.16c | ||||
T1 | 12.52±0.04b | 12.65±0.11b | 66.08±0.08b | ||||
T2 | 11.98±0.04c | 11.72±0.09c | 66.42±0.08b |
表3
不同栽培措施下两品种水稻强、弱势粒淀粉的结晶度与IR值"
品种 Variety | 粒位 Grain position | 处理 Treatment | 结晶度 Crystallinity (%) | IR | |
---|---|---|---|---|---|
1045/1022 cm-1 | 1022/995 cm-1 | ||||
甬优2640 Y2640 | 强势粒 Superior grain | 0N | 24.94±0.02d | 0.52±0.01d | 1.19±0.01a |
LFP | 25.74±0.02a | 0.68±0.00a | 0.95±0.02c | ||
T1 | 25.56±0.03b | 0.63±0.01b | 1.03±0.01b | ||
T2 | 25.47±0.01c | 0.60±0.00c | 1.05±0.01b | ||
弱势粒 Inferior grain | 0N | 26.86±0.04a | 0.71±0.01a | 0.88±0.01b | |
LFP | 26.77±0.03a | 0.69±0.01a | 0.92±0.01b | ||
T1 | 26.53±0.02b | 0.66±0.01b | 0.96±0.01a | ||
T2 | 26.44±0.04b | 0.64±0.00b | 0.99±0.01a | ||
武运粳24 W24 | 强势粒 Superior grain | 0N | 23.82±0.05c | 0.43±0.01c | 1.31±0.02a |
LFP | 24.86±0.01a | 0.66±0.01a | 1.07±0.02c | ||
T1 | 24.65±0.04b | 0.59±0.02b | 1.15±0.00b | ||
T2 | 24.57±0.04b | 0.57±0.01b | 1.18±0.01b | ||
弱势粒 Inferior grain | 0N | 26.31±0.08a | 0.69±0.01a | 0.92±0.01c | |
LFP | 26.11±0.02a | 0.67±0.00ab | 0.96±0.01b | ||
T1 | 25.80±0.06b | 0.64±0.02bc | 0.99±0.00a | ||
T2 | 25.67±0.06b | 0.60±0.01c | 1.01±0.00a |
表4
不同栽培措施下两品种水稻全穗籽粒和强、弱势粒籽粒淀粉的RVA特征值"
年份 Year | 品种 Variety | 粒位 Grain position | 处理 Treatment | 峰值黏度 PV (cP) | 热浆黏度 TV (cP) | 崩解值 BD (cP) | 最终黏度 FV (cP) | 消解值 SB (cP) | 峰值时间 PT (s) | 糊化温度 GT (℃) |
---|---|---|---|---|---|---|---|---|---|---|
2018 | 甬优2640 Y2640 | — | 0N | 2696.00±22.63a | 2095.33±16.50a | 600.67±6.12a | 2896.67±21.52a | 200.67±9.66c | 6.61±0.10a | 72.87±0.10c |
— | LFP | 2126.33±28.75c | 1710.33±2.05c | 416.00±26.70c | 2399.33±23.93c | 273.00±4.82a | 6.79±0.13a | 75.89±0.12a | ||
— | T1 | 2201.67±11.31bc | 1732.67±9.73bc | 469.00±11.58bc | 2457.00±19.02bc | 255.33±7.71ab | 6.73±0.04a | 74.87±0.08b | ||
— | T2 | 2238.33±11.78b | 1752.00±5.67b | 486.33±6.11b | 2484.33±11.96b | 246.00±0.18b | 6.71±0.08a | 74.60±0.07b | ||
武运粳24 W24 | — | 0N | 2970.33±14.38a | 2173.67±13.92a | 796.67±28.29a | 3106.00±20.90a | 135.67±0.71c | 6.57±0.10a | 71.42±0.17c | |
— | LFP | 2148.67±18.38d | 1695.33±18.68c | 453.33±37.07c | 2447.00±16.31c | 298.33±2.08a | 6.74±0.11a | 74.26±0.08a | ||
— | T1 | 2330.67±11.41c | 1705.67±15.57c | 625.00±26.98b | 2580.00±24.95b | 249.33±13.53b | 6.69±0.14a | 73.26±0.11b | ||
— | T2 | 2418.33±23.26b | 1784.67±5.98b | 633.67±29.24b | 2656.00±11.98b | 237.67±11.29b | 6.66±0.08a | 72.88±0.10b | ||
2019 | 甬优2640 Y2640 | 强势粒 Superior grain | 0N | 3709.50±19.09a | 2618.00±8.49a | 1091.50±10.61a | 3951.00±35.36a | 241.50±16.26d | 6.17±0.05c | 74.92±0.08b |
LFP | 2742.00±11.31d | 1958.50±45.96c | 783.50±34.65b | 3580.50±30.41c | 838.50±19.09a | 6.94±0.09a | 77.03±0.53a | |||
T1 | 3138.50±21.92c | 2145.50±19.09b | 993.00±41.01a | 3691.50±9.19b | 553.00±12.73b | 6.90±0.04ab | 76.20±0.28a | |||
T2 | 3247.00±18.38b | 2228.50±9.19b | 1018.50±27.58a | 3691.50±12.02b | 463.50±30.41c | 6.60±0.10b | 76.06±0.05ab | |||
弱势粒 Inferior grain | 0N | 2409.50±16.26d | 1446.50±9.19d | 963.00±7.07b | 3044.00±18.38c | 634.50±2.12a | 6.84±0.23a | 77.92±0.09a | ||
LFP | 2521.50±6.36c | 1540.00±1.41c | 981.50±4.95b | 3143.00±2.83b | 621.50±9.19ab | 6.82±0.21a | 77.77±0.18a | |||
T1 | 2638.00±8.49b | 1634.00±12.73b | 1004.00±4.24ab | 3220.50±12.02a | 582.50±3.54b | 6.80±0.28a | 77.19±0.06b | |||
T2 | 2727.00±32.53a | 1678.00±5.66a | 1049.00±26.87a | 3252.00±9.90a | 525.00±22.63c | 6.77±0.14a | 76.77±0.02c | |||
武运粳24 W24 | 强势粒 Superior grain | 0N | 3561.50±36.06a | 2746.00±9.90a | 815.50±26.16a | 3859.50±20.51a | 298.00±15.56c | 6.10±0.04b | 73.38±0.25c | |
LFP | 2843.50±14.85c | 2288.00±1.41d | 555.50±13.44c | 3539.00±22.63c | 695.50±7.78a | 6.73±0.00a | 76.28±0.18a | |||
T1 | 3041.50±23.33b | 2363.00±8.49c | 678.50±14.85b | 3587.00±0.00bc | 545.50±23.33b | 6.64±.05a | 75.38±0.11b | |||
T2 | 3082.00±19.80b | 2392.00±4.24b | 690.00±15.56b | 3610.00±2.83b | 528.00±22.63b | 6.54±0.09a | 75.12±0.14b | |||
弱势粒 Inferior grain | 0N | 2262.00±12.73b | 1549.00±16.97c | 682.50±4.95b | 3029.50±3.54c | 767.50±9.19a | 7.00±0.00a | 77.70±0.35a | ||
LFP | 2292.50±7.78b | 1610.00±12.73b | 696.50±2.12ab | 3057.00±9.90b | 764.50±2.12a | 7.00±0.00a | 77.33±0.11b | |||
T1 | 2361.50±10.61a | 1665.00±8.49a | 706.00±7.07a | 3095.50±4.95a | 734.00±5.66b | 6.87±0.00a | 76.64±0.14bc | |||
T2 | 2401.00±15.56a | 1695.00±8.49a | 713.00±4.24a | 3118.00±5.66a | 717.00±9.90b | 6.77±0.14a | 76.21±0.06c |
[1] | 谢建华. 积极发展粳稻生产, 不断优化稻米结构. 中国农技推广, 2006(1):4-7. |
XIE J H. Actively develop japonica rice production and optimize rice structure constantly. China Agricultural Technology Extension, 2006(1):4-7. (in Chinese) | |
[2] |
KATO T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science, 1995, 35(3):827-831.
doi: 10.2135/cropsci1995.0011183X003500030032x |
[3] |
NING H F, QIAO J F, LIU Z H, LIN Z M, LI G H, WANG Q S, WANG S H, DING Y F. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. Journal of Cereal Science, 2010, 52(1):90-95.
doi: 10.1016/j.jcs.2010.03.009 |
[4] | 张恒栋, 黄敏, 邹应斌, 陈佳娜, 单双吕. 米粉稻籽粒直链淀粉积累特性. 中国农业科学, 2021, 54(7):1354-1364. |
ZHANG H D, HUANG M, ZOU Y B, CHEN J N, SHAN S L. Amylose accumulation properties in the grains of noodle rice. Scientia Agricultura Sinica, 2021, 54(7):1354-1364. (in Chinese) | |
[5] | ZHAO Q, HAO X Y, ALI IZHAR, IQBAL ANAS, ULLAH SAIF, HUANG M, KONG F Y, LI T Y, XUAN Y, LI F Q, YAN B, LUO Y Q, LIANG H, WEI S Q, CHEN N P, JIANG L G. Characterization and grouping of all primary branches at various positions on a rice panicle based on grain growth dynamics. Agronomy-Basel, 2020, 10(2):1-21. |
[6] |
YANG J C, ZHANG J H. Grain-filling problem in ‘super’ rice. Journal of Experimental Botany, 2010, 61(1):1-4.
doi: 10.1093/jxb/erp348 |
[7] | 赵步洪, 董明辉, 张洪熙, 朱庆森, 杨建昌. 杂交水稻穗上不同粒位籽粒品质性状的差异. 扬州大学学报(农业与生命科学版), 2006(1):38-42. |
ZHAO B H, DONG M H, ZHANG H X, ZHU Q S, YANG J C. Difference in quality characters of the grains at different positions within a hybrid rice panicle. Journal of Yangzhou University (Agricultural and Life Science Edition), 2006(1):38-42. (in Chinese) | |
[8] | 吕文俊, 崔晶, 孙玥, 苏京平, 王胜军, 刘学军, 崔中秋. 不同栽培处理对稻米品质及食味的影响. 北方水稻, 2019, 49(3):1-12. |
LÜ W J, CUI J, SUN Y, SU J P, WANG S J, LIU X J, CUI Z Q, The effects of different cultivation methods on rice quality and palatability. North Rice, 2019, 49(3):1-12. (in Chinese) | |
[9] | 董明辉, 陈培峰, 顾俊荣, 乔中英, 黄萌, 朱赟德, 赵步洪. 麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响. 作物学报, 2013, 39(4):673-681. |
DONG M H, CHEN P F, GU J R, QIAO Z Y, HUANG M, ZHU Y D, ZHAO B H. Effects of wheat straw-residue applied to field and nitrogen management on photosynthate transportation of stem and sheath and grain-filling characteristics in super hybrid rice. Acta Agronomica Sinica, 2013, 39(4):673-681. (in Chinese) | |
[10] | 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54(7):1301-1321. |
ZHANG H C, HU Y J, YANG J C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, XING Z P, HU Q. Development and prospect of rice cultivation in China. Scientia Agricultura Sinica, 2021, 54(7):1301-1321. (in Chinese) | |
[11] | 包灵丰, 林纲, 赵德明, 王丽, 贺兵, 江青山, 张杰. 不同播期与收获期对水稻灌浆期、产量及米质的影响. 华南农业大学学报, 2017, 38(2):32-37. |
BAO L F, LIN G, ZHAO D M, WANG L, HE B, JIANG Q S, ZHANG J. Influence of different sowing date and harvest time on rice filling stage, yield and grain quality. Journal of South China Agricultural University, 2017, 38(2):32-37. (in Chinese) | |
[12] | 谢成林, 姚义, 李锦霞, 冯龙庆, 周兴涛, 王汝利. 栽培措施对南粳9108群体质量及其品质的影响. 扬州大学学报(农业与生命科学版), 2016, 37(1):65-69. |
XIE C L, YAO Y, LI J X, FENG L Q, ZHOU X T, WANG R L. Effects of cultural practices on population quality and rice quality of Nanjing9108. Journal of Yangzhou University (Agricultural and Life Science Edition), 2016, 37(1):65-69. (in Chinese) | |
[13] | 路凯, 赵庆勇, 周丽慧, 赵春芳, 张亚东, 王才林. 稻米蛋白质含量与食味品质的关系及其影响因素研究进展. 江苏农业学报, 2020, 36(5):1305-1311. |
LU K, ZHAO Q Y, ZHOU L H, ZHAO C F, ZHANG Y D, WANG C L. Research progress on the relationship between rice protein content and eating quality and the influence factors. Jiangsu Journal of Agricultural Sciences, 2020, 36(5):1305-1311. (in Chinese) | |
[14] | 彭碧琳, 李妹娟, 胡香玉, 钟旭华, 唐湘如, 刘彦卓, 梁开明, 潘俊峰, 黄农荣, 傅友强, 胡锐. 轻简氮肥管理对华南双季稻产量和氮肥利用率的影响. 中国农业科学, 2021, 54(7):1424-1438. |
PENG B L. LI M J, HU X Y, ZHONG X H, TANG X R, LIU Y Z, LIANG K M, PAN J F, HUANG N R, FU Y Q, HU R. Effects of simplified nitrogen managements on grain yield and nitrogen use efficiency of double-cropping rice in south China. Scientia Agricultura Sinica, 2021, 54(7):1424-1438. (in Chinese) | |
[15] |
ZHU D W, ZHANG H C, GUO B W, XU K, DAI Q G, WEI C X, ZHOU G S, HUO Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocolloids, 2017, 63:525-532.
doi: 10.1016/j.foodhyd.2016.09.042 |
[16] | 王肖凤, 汪吴凯, 夏方招, 孙亚婷, 戴泽彰, 郑祥波, 杨特武, 姚璇. 水分管理对再生稻稻米品质的影响. 华中农业大学学报, 2021, 40(2):103-111. |
WANG X F, WANG W K, XIA F Z, SUN Y T, DAI Z Z, ZHENG X B, YANG T W, YAO X. Effects of water management on grain quality of ratooning rice. Journal of Huazhong Agricultural University, 2021, 40(2):103-111. (in Chinese) | |
[17] | 唐健, 唐闯, 郭保卫, 张诚信, 张振振, 王科, 张洪程, 陈恒, 孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020, 46(1):117-130. |
TANG J, TANG C, GUO B W, ZHANG C X, ZHANG Z Z, WANG K, ZHANG H C, CHEN H, SUN M Z. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice. Acta Agronomica Sinica, 2020, 46(1):117-130. (in Chinese) | |
[18] | 朱大伟. 三种关键栽培措施对软米粳稻产量与品质的影响[D]. 扬州: 扬州大学, 2018. |
ZHU D W. Effects of three key cultivation measures on yield and quality of japonica soft rice. Yangzhou: Yangzhou University, 2018. (in Chinese) | |
[19] | 王新其, 程灿, 方军, 朱元宏, 曹黎明. 氮肥运筹对杂交粳稻‘申优17’主要品质性状效应分析. 上海农业学报, 2020, 36(4):25-30. |
WANG X Q, CHENG C, FANG J, ZHU Y H, CAO L M. Effects of nitrogen application on main quality traits of japonica hybrid rice ‘Shenyou17’. Acta Agriculturae Shanghai, 2020, 36(4):25-30. (in Chinese) | |
[20] | 蒋鹏, 熊洪, 张林, 周兴兵, 朱永川, 刘茂, 郭晓艺, 徐富贤. 施氮量和氮肥运筹模式对糯稻产量及品质的影响. 作物研究, 2015, 29(6):595-598. |
JIANG P, XIONG H, ZHANG L, ZHOU X B, ZHU Y C, LIU M, GUO X Y, XU F X. Effect of nitrogen rates and nitrogen application regimes on grain yield and rice quality of glutinous rice. Crop Research, 2015, 29(6):595-598. (in Chinese) | |
[21] | 兰宇辰, 郭晓红, 李猛, 赵洋, 李晓蕾, 姜红芳, 王鹤璎, 徐令旗, 张晓宁, 吕艳东. 施氮量与移栽密度互作对垦粳7号稻米品质的影响. 中国农业科技导报, 2021, 23(1):136-145. |
LAN Y C, GUO X H, LI M, ZHAO Y, LI X L, JIANG H F, WANG H Y, XU L Q, ZHANG X N, LÜ Y D. Influences of the interaction between nitrogen fertilizer application rate and transplanting density on Kenjing 7 rice quality. Journal of Agricultural Science and Technology, 2021, 23(1):136-145. (in Chinese) | |
[22] | 严凯, 蒋玉兰, 唐纪元, 戴其根. 盐碱地条件下施氮量和栽插密度对水稻产量和品质的影响. 中国土壤与肥料, 2018(2):67-74. |
YAN K, JIANG Y L, TANG J Y, DAI Q G. Effects of nitrogen fertilizer rate and transplanting density on yield and grain quality of rice on saline-alkaline land. Soil and Fertilizer Sciences in China, 2018(2):67-74. (in Chinese) | |
[23] | 王红运, 张炎龙, 赵骞, 董俊伟, 宫建元, 王韵舒, 周奕, 曲一格, 王晓航. 不同移栽密度对吉科稻516产量及品质的影响. 北方水稻, 2020, 50(6):24-26. |
WANG H Y, ZHANG Y L, ZHAO Q, DONG J W, GONG J Y, WANG Y S, ZHOU Y, QU Y G, WANG X H. Effects of different transplanting densities on yield and quality of Jikedao-516. North Rice, 2020, 50(6):24-26. (in Chinese) | |
[24] | 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012, 26(1):77-84. |
LIU L J, LI H W, ZHAO B H, WANG Z Q, YANG J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chinese Journal of Rice Science, 2012, 26(1):77-84. (in Chinese) | |
[25] | 张耗, 马丙菊, 张春梅, 赵步洪, 许京菊, 邵士梅, 顾骏飞, 刘立军, 王志琴, 杨建昌. 全生育期干湿交替灌溉对稻米品质及淀粉特性的影响. 扬州大学学报(农业与生命科学版), 2020, 41(6):1-8. |
ZHANG H, MA B J, ZHANG C M, ZHAO B H, XU J J, SHAO S M, GU J F, LIU L J, WANG Z Q, YANG J C. Effects of alternate wetting and drying irrigation during whole growing season on quality and starch properties of rice. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(6):1-8. (in Chinese) | |
[26] |
GU J F, CHEN Y, ZHANG H, LI Z K, ZHOU Q, YU C, KONG X S, LIU L J, WANG Z Q, YANG J C. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research, 2017, 206:74-85.
doi: 10.1016/j.fcr.2017.02.021 |
[27] |
ZHOU T Y, ZHOU Q, LI E P, YUAN L M, WANG W L, ZHANG H, LIU L J, WANG Z Q, YANG J C, GU J F. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohydrate Polymers, 2020, 239:116237.
doi: 10.1016/j.carbpol.2020.116237 |
[28] | 殷春渊, 王书玉, 刘贺梅, 薛应征, 张栩, 王和乐, 孙建权, 胡秀明, 李习军. 氮肥施用量对超级粳稻新稻18号强、弱势籽粒灌浆和稻米品质的影响. 中国水稻科学, 2013, 27(5):503-510. |
YIN C Y, WANG S Y, LIU H M, XUE Y Z, ZHANG X, WANG H L, SUN J Q, HU X M, LI X J. Effects of nitrogen fertilizer application on grain filling characteristics and rice quality of superior and inferior grains in super japonica rice Xindao 18. Chinese Journal of Rice Science, 2013, 27(5):503-510. (in Chinese) | |
[29] | LIN Z M, WANG Z X, ZHANG X C, LIU Z H, LI G H, WANG S H, DING Y F. Complementary proteome and transcriptome profiling in developing grains of a notched-belly rice mutant reveals key pathways involved in chalkiness formation. Plant & Cell Physiology, 2017, 58(3):560-573. |
[30] |
GU J F, CHEN J, CHEN L, WANG Z Q, ZHANG H, YANG J C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop Journal, 2015, 3(4):285-297.
doi: 10.1016/j.cj.2015.03.007 |
[31] |
WANI A A, SINGH P, SHAH M A, SCHWEIGGERT U, GUL K, WANI L A. Rice starch diversity: effects on structural, morphological, thermal, and physicochemical properties-A review. Comprehensive Reviews in Food Science and Food Safety, 2012, 11(5):417-436.
doi: 10.1111/j.1541-4337.2012.00193.x |
[32] |
CHEETHAM N W, TAO L P. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 1998, 36(4):277-284.
doi: 10.1016/S0144-8617(98)00007-1 |
[33] | 张丽, 张吉旺, 刘鹏, 董树亭. 不同淀粉含量玉米籽粒淀粉粒度的分布特性. 中国农业科学, 2011, 44(8):1596-1602. |
ZHANG L, ZHANG J W, LIU P, DONG S T. Starch granule size distribution in grains of maize with different starch contents. Scientia Agricultura Sinica, 2011, 44(8):1596-1602. (in Chinese) | |
[34] | 陆大雷, 郭换粉, 董策, 陆卫平. 普通、甜、糯玉米果穗不同部位籽粒淀粉理化特性和颗粒分布差异. 作物学报, 2011, 37(2):331-338. |
LU D L, GUO H F, DONG C, LU W P. Starch physicochemical characteristics and granule size distribution at apical, middle and basal ear positions in normal, sweet, and waxy maize. Acta Agronomica Sinica, 2011, 37(2):331-338. (in Chinese) | |
[35] | 刘鑫燕, 李娟, 刘雪菊, 张昌泉, 顾铭洪, 刘巧泉. 可溶性淀粉合成酶与稻米淀粉精细结构关系的研究进展. 植物生理学报, 2014, 50(10):1453-1458. |
LIU X Y, LI J, LIU X J, ZHANG C Q, GU M H, LIU Q Q. Progress in the relationship between soluble starch synthases and starch fine structure in rice. Plant Physiology Journal, 2014, 50(10):1453-1458. (in Chinese) | |
[36] | 张耗, 谈桂露, 孙小淋, 刘立军, 杨建昌. 江苏省中籼水稻品种演进过程中米质的变化. 作物学报, 2009, 35(11):2037-2044. |
ZHANG H, TAN G L, SUN X L, LIU L J, YANG J C. Changes in grain quality during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agronomica Sinica, 2009, 35(11):2037-2044. (in Chinese) | |
[37] | 张国发, 侯朋福. 结实期温度对不同粒位稻米淀粉RVA的影响. 大庆师范学院学报, 2008(5):121-123. |
ZHANG G F, HOU P F. Effect of temperature at seed setting stage on starch RVA of rice at different grain positions. Journal of Daqing Normal University, 2008(5):121-123. (in Chinese) | |
[38] | 林郸, 李郁, 孙永健, 谌洁, 吕腾飞, 孙知白, 吕旭, 刘芳艳, 郭长春, 孙园园, 杨志远, 马均. 不同轮作模式下秸秆还田与氮肥运筹对杂交籼稻产量及米质的影响. 中国生态农业学报(中英文), 2020, 28(10):1581-1590. |
LIN H, LI Y, SUN Y J, SHEN J, LÜ T F, SUN Z B, LÜ X, LIU F Y, GUO C C, SUN Y Y, YANG Z Y, MA J. Effects of straw returning and nitrogen application on yield and quality of hybrid indica rice under different rotation patterns. Chinese Journal of Eco-Agriculture, 2020, 28(10):1581-1590. (in Chinese) | |
[39] |
BALINDONG J L, WARD R M, LIU L, ROSE T J, PALLAS L A, OVENDEN B W, SNELL P J, WATERS D L E. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. Journal of Cereal Science, 2017, 79:35-42.
doi: 10.1016/j.jcs.2017.09.008 |
[40] |
ZHANG C H, JIANG D, LIU F L, CAI J, DAI T B, CAO W X. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling. Journal of Cereal Science, 2009, 51(2):226-233.
doi: 10.1016/j.jcs.2009.12.002 |
[41] | 张皓政. 不同灌溉方式下氮肥施用量对寒地粳稻氮代谢及产质量的影响[D]. 哈尔滨: 东北农业大学, 2014. |
ZHANG H Z. Effects of nitrogen fertilizer on nitrogen metabolism, yield and quality of cold-region rice under different irrigation methods[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese) | |
[42] | 陈书强, 薛菁芳, 潘国君, 王秋玉. 粳稻粒位间淀粉RVA谱特征与其它品质性状的关系. 核农学报, 2015, 29(2):244-251. |
CHEN S Q, XUE J F, PAN G J, WANG Q Y. Relationship between RVA profile characteristics and other quality traits in grain positions of japonica rice. Journal of Nuclear Agricultural Sciences, 2015, 29(2):244-251. (in Chinese) | |
[43] | 徐云姬, 张伟杨, 钱希旸, 李银银, 杨建昌. 3种禾谷类作物弱势粒灌浆机理与调控途径. 安徽农业科学, 2015, 43(2):59-61, 122. |
XU Y J, ZHANG W Y, QIAN X Y, LI Y Y, YANG J C. Mechanism and regulation in the filling of inferior caryopses in three kinds of cereal crops. Journal of Anhui Agricultural Sciences, 2015, 43(2):59-61, 122. (in Chinese) | |
[44] |
THITISAKASKUL M, JIMENEZ R C, ARIAS M C, BECKLES D M. Effects of environmental factors on cereal starch biosynthesis and composition. Journal of Cereal Science, 2012, 56(1):67-80.
doi: 10.1016/j.jcs.2012.04.002 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[4] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[5] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[6] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[7] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[8] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[9] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[10] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[11] | 肖璐婷,李秀红,刘栗君,叶发银,赵国华. 淀粉粒径对大麦淀粉物化特性的影响[J]. 中国农业科学, 2022, 55(5): 1010-1024. |
[12] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[13] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[14] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[15] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
|