中国农业科学 ›› 2022, Vol. 55 ›› Issue (5): 1010-1024.doi: 10.3864/j.issn.0578-1752.2022.05.013
肖璐婷1(),李秀红1,刘栗君1,叶发银1,2,3(),赵国华1,2,3
收稿日期:
2021-06-17
接受日期:
2021-09-08
出版日期:
2022-03-01
发布日期:
2022-03-08
通讯作者:
叶发银
作者简介:
肖璐婷,E-mail: 基金资助:
XIAO LuTing1(),LI XiuHong1,LIU LiJun1,YE FaYin1,2,3(),ZHAO GuoHua1,2,3
Received:
2021-06-17
Accepted:
2021-09-08
Online:
2022-03-01
Published:
2022-03-08
Contact:
FaYin YE
摘要:
【目的】大麦籽粒是一类重要的谷物原料,在啤酒酿造、禽畜喂饲、药食保健等领域的用途十分广泛。研究表明,籽粒中的淀粉颗粒大小及淀粉组成结构决定其用途。通过研究不同品种大麦不同粒径淀粉颗粒的组成结构及物化性质,为大麦淀粉加工利用提供参考。【方法】以西引2号(Xiyin-2)、京辛1号(Jingxin-1)、苏啤6号(Supi-6)3种不同用途的大麦品种籽粒为原料,采用沉降分离法得到大、中、小3个粒径的淀粉颗粒,研究颗粒显微形态、淀粉晶体结构、直链淀粉含量、支链淀粉侧链分布以及淀粉颗粒热特性、水合性质、糊化特性和消化特性与粒径的关系。【结果】大颗粒大麦淀粉多呈盘状,中颗粒淀粉呈扁圆形或椭球形,小颗粒淀粉呈球形或多角形。在偏振光显微镜下,所有大麦淀粉颗粒具有典型的偏光十字,且偏振光亮斑随粒径增加而增强。大麦淀粉的大颗粒占比最高(87.62%—89.48%),其次为中颗粒(8.97%—9.42%)和小颗粒(1.55%—3.29%)。大麦淀粉的表观直链淀粉含量为19.12—30.63 g/100 g,粒径对其含量的影响缺乏规律性。所有样品均为A型结晶,相对结晶度随着粒径增大而增加。大麦支链淀粉的侧链分布呈现双峰模式,主峰在DP 12处,次峰在DP 38处,大麦支链淀粉以B1链含量最高(34.34%—44.76%),其次是A链(25.12%—34.52%),大麦支链淀粉的平均链长为DP 22.86—25.00。热特性分析结果表明,小颗粒大麦淀粉的糊化温度区间(∆T)最大,糊化焓(∆H)则随着粒径增加而增大。大麦淀粉的膨胀力表现出品种差异,京辛1号大麦淀粉所有粒径颗粒均具有较高的膨胀力。糊化特性分析结果表明,大颗粒淀粉的峰值黏度、崩解值、终值黏度比中颗粒和小颗粒淀粉更高。消化特性分析结果表明,大麦淀粉颗粒快消化淀粉(RDS)含量随着粒径减小而增加,而粒径对其慢消化淀粉(SDS)和抗性淀粉(RS)含量的影响缺乏规律。【结论】粒径对大麦淀粉的直链淀粉含量、支链淀粉精细结构、相对结晶度等结构特征有较大影响,从而影响大麦淀粉的热特性、糊化特性及消化特性等性能。
肖璐婷,李秀红,刘栗君,叶发银,赵国华. 淀粉粒径对大麦淀粉物化特性的影响[J]. 中国农业科学, 2022, 55(5): 1010-1024.
XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches[J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
表1
大麦淀粉的基本特性*"
项目Item | 西引2号Xiyin-2 | 京辛1号Jingxin-1 | 苏啤6号Supi-6 |
---|---|---|---|
水分Moisture (g/100 g) | 15.90±0.32a | 13.42±0.19b | 10.93±0.18c |
总淀粉Total starch (g/100 g) | 98.13±2.13a | 98.95±3.46a | 98.42±1.36a |
蛋白质Protein (g/100 g) | 1.54±0.01a | 1.02±0.02c | 1.18±0.01b |
灰分Ash (g/100 g) | 0.04±0.01a | 0.02±0.01b | 0.01±0.01b |
表观直链淀粉Apparent amylose (g/100 g) | 27.60±3.16a | 22.37±2.19c | 24.70±2.49b |
表面积平均粒径D[3,2] Surface area average particle size (µm) | 7.53±0.01b | 8.31±0.01a | 7.68±0.01b |
体积平均粒径D[4,3] Volume average particle size (µm) | 16.20±0.03b | 17.13±0.03a | 16.41±0.06b |
低值粒径d(0.1) Low particle size (µm) | 8.61±0.03b | 9.68±0.02a | 8.78±0.23b |
中值粒径d(0.5) Median particle size (µm) | 16.37±0.03b | 17.29±0.03a | 16.46±0.04b |
高值粒径d(0.9) High particle size (µm) | 24.26±0.06b | 25.48±0.05a | 24.90±0.44b |
比表面积Specific surface area (m2·g-1) | 0.80±0.02a | 0.72±0.01b | 0.78±0.01ab |
表2
大麦大、中、小淀粉颗粒的性质"
项目 Item | 西引2号Xiyin-2 | 京辛1号Jingxin-1 | 苏啤6号Supi-6 | ||||||
---|---|---|---|---|---|---|---|---|---|
大 Large | 中 Medium | 小 Small | 大 Large | 中 Medium | 小 Small | 大 Large | 中 Medium | 小 Small | |
总淀粉Total starch (g/100 g) | 98.52 | 98.54 | 99.37 | 98.21 | 98.53 | 97.65 | 98.62 | 97.96 | 98.59 |
表观直链淀粉Apparent amylose (g/100 g) | 24.23 | 30.63 | 27.14 | 25.51 | 19.12 | 23.53 | 29.47 | 21.67 | 22.49 |
晶体类型Crystal type | A型 | A型 | A型 | A型 | A型 | A型 | A型 | A型 | A型 |
相对结晶度Relative crystallinity (%) | 36.20 | 28.10 | 25.20 | 41.30 | 26.50 | 23.30 | 33.70 | 27.60 | 24.60 |
体积百分比Volume percentage (%) | 87.71 | 9.42 | 2.85 | 89.48 | 8.97 | 1.55 | 87.62 | 9.11 | 3.29 |
A链Chain (DP 6-12) (%) | 25.12 | 25.31 | 27.44 | 34.52 | 25.75 | 26.87 | 28.52 | 26.33 | 26.87 |
B1链Chain (DP 13-24) (%) | 44.76 | 44.09 | 43.36 | 34.34 | 44.58 | 44.19 | 36.83 | 41.97 | 44.19 |
B2链Chain (DP 25-36) (%) | 16.99 | 16.60 | 15.23 | 12.62 | 16.51 | 15.81 | 14.63 | 14.63 | 15.81 |
B3链Chain (DP>36) (%) | 13.12 | 13.41 | 11.61 | 9.96 | 12.93 | 12.20 | 12.21 | 13.88 | 12.20 |
平均链长Average chain length (DP) | 25.00 | 24.85 | 24.41 | 22.86 | 24.94 | 24.77 | 23.05 | 24.20 | 24.77 |
表3
大、中、小大麦淀粉的热特性和糊化特性"
项目 Item | 西引2号Xiyin-2 | 京辛1号Jingxin-1 | 苏啤6号Supi-6 | ||||||
---|---|---|---|---|---|---|---|---|---|
大 Large | 中 Medium | 小 Small | 大 Large | 中 Medium | 小 Small | 大 Large | 中 Medium | 小 Small | |
起始糊化温度To (℃) | 61.1 | 61.0 | 60.9 | 61.7 | 60.9 | 60.1 | 61.3 | 60.7 | 60.6 |
峰值糊化温度TP (℃) | 64.3 | 64.9 | 65.5 | 64.6 | 65.1 | 67.0 | 64.5 | 65.2 | 66.9 |
终值糊化温度Tc (℃) | 70.0 | 70.1 | 71.4 | 68.4 | 70.0 | 72.9 | 70.0 | 70.4 | 72.1 |
糊化温度区间∆T (℃) | 8.9 | 9.1 | 10.5 | 6.7 | 9.1 | 12.9 | 8.8 | 9.7 | 11.4 |
糊化焓∆H (J·g-1) | 7.6 | 5.4 | 4.7 | 7.4 | 5.6 | 4.3 | 7.4 | 5.7 | 4.1 |
糊化温度Gelatinization temperature (℃) | 77.7 | 83.9 | — | 81.1 | 81.6 | — | 81.1 | 83.2 | — |
峰值黏度Peak viscosity (cP) | 2208 | 1790 | — | 3568 | 3129 | — | 2398 | 1935 | — |
谷值黏度Trough viscosity (cP) | 1037 | 1033 | — | 1763 | 1659 | — | 1274 | 1060 | — |
崩解值Breakdown (cP) | 1171 | 757 | — | 1805 | 1470 | — | 1125 | 875 | — |
终值黏度Final viscosity (cP) | 2158 | 1998 | — | 3429 | 2985 | — | 2305 | 2090 | — |
回生值Setback (cP) | 1121 | 965 | — | 1666 | 1326 | — | 1032 | 1030 | — |
表4
大麦籽粒中大中小淀粉颗粒的快消化淀粉、慢消化淀粉与抗性淀粉的含量"
品种Cultivar | 淀粉颗粒Starch granule | 快消化淀粉RDS (%) | 慢消化淀粉SDS (%) | 抗性淀粉RS (%) |
---|---|---|---|---|
西引2号 Xiyin-2 | 大Large | 23.43±0.23g | 46.94±0.55c | 26.81±0.49a |
中Medium | 30.80±0.15e | 44.34±0.26d | 21.51±0.36d | |
小Small | 36.29±0.41b | 37.12±0.27e | 23.35±0.64c | |
京辛1号 Jingxin-1 | 大Large | 27.93±0.10f | 48.81±1.13b | 20.71±1.06d |
中Medium | 33.68±1.90d | 52.42±2.43a | 10.21±0.55f | |
小Small | 33.85±0.64d | 35.50±1.00e | 24.15±0.44b | |
苏啤6号 Supi-6 | 大Large | 30.60±0.42e | 34.82±0.81f | 26.31±0.85a |
中Medium | 35.82±0.14c | 46.77±0.32c | 18.58±0.20e | |
小Small | 42.74±0.14a | 46.68±0.53c | 6.90±0.40g |
[1] |
ZHANG B J, LI X X, LIU J, XIE F W, CHEN L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocolloids, 2013, 31(1):68-73.
doi: 10.1016/j.foodhyd.2012.10.006 |
[2] |
SHANG J Y, LI L, ZHAO B, LIU M, ZHENG X L. Comparative studies on physicochemical properties of total, A- and B-type starch from soft and hard wheat varieties. International Journal of Biological Macromolecules, 2020, 154:714-723. doi: 10.1016/j.ijbiomac.2020.03.150.
doi: 10.1016/j.ijbiomac.2020.03.150 |
[3] |
PUNIA S. Barley starch: Structure, properties and in vitro digestibility-A review. International Journal of Biological Macromolecules, 2020, 155:868-875. doi: 10.1016/j.ijbiomac.2019.11.219.
doi: 10.1016/j.ijbiomac.2019.11.219 |
[4] | 韦存虚, 张静, 钟方旭, 周卫东, 许如根, 马雷. 啤酒大麦与饲用大麦籽粒结构和淀粉粒的比较研究. 麦类作物学报, 2006, 26(4):133-138. |
WEI C X, ZHANG J, ZHONG F X, ZHOU W D, XU R G, MA L. Comparison of the starch granule and kernel structure between feed and malt barley varieties. Journal of Triticeae Crops, 2006, 26(4):133-138. (in Chinese) | |
[5] |
YU W W, TAN X L, ZOU W, HU Z X, FOX G P, GIDLEY M J, GILBERT R G. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydrate Polymers, 2017, 155:271-279. doi: 10.1016/j.carbpol.2016.08.078.
doi: 10.1016/j.carbpol.2016.08.078 |
[6] |
JAISWAL S, MONICA B, GEETIKA A, ROSSNAGEL B G, CHIBBAR R N. Development of barley (Hordeum Vulgare L.) lines with altered starch granule size distribution. Journal of Agricultural and Food Chemistry, 2014, 62(10):2289-2296.
doi: 10.1021/jf405424x |
[7] |
TAKEDA Y, TAKEDA C, MIZUKAMI H, HANASHIRO I. Structures of large, medium and small starch granules of barley grain. Carbohydrate Polymers, 1999, 38(2):109-114.
doi: 10.1016/S0144-8617(98)00105-2 |
[8] |
MYLLRINEN P, AUTIO K, SCHULMAN A H, POUTANEN K. Heat-induced structural changes of small and large barley starch granules. Journal of the Institute of Brewing, 1998, 104:343-349.
doi: 10.1002/jib.1998.104.issue-6 |
[9] |
NAGULESWARAN S, VASANTJAN T, HOOVER R, BRESSLER D. The susceptibility of large and small granules of waxy, normal and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures. Food Research International, 2013, 51(2):771-782.
doi: 10.1016/j.foodres.2013.01.057 |
[10] |
AHMED Z, TETLOW I J, FALK D E, LIU Q, EMES M J. Resistant starch content is related to granule size in barley. Cereal Chemistry, 2016, 93(6):618-630.
doi: 10.1094/CCHEM-02-16-0025-R |
[11] |
DE SCHEPPER C F, MICHIELS P, LANGENAEKEN N A, COURTIN C M. Accurate quantification of small and large starch granules in barley and malt. Carbohydrate Polymers, 2020, 227:115329. doi: 10.1016/j.carbpol.2019.115329.
doi: 10.1016/j.carbpol.2019.115329 |
[12] |
LANGENAEKEN N A, DE SCHEPPER C F, DE SCHUTTER D P, COURTIN C M. Different gelatinization characteristics of small and large barley starch granules impact their enzymatic hydrolysis and sugar production during mashing. Food Chemistry, 2019, 295:138-146. doi: 10.1016/j.foodchem.2019.05.045.
doi: 10.1016/j.foodchem.2019.05.045 |
[13] |
DE SCHEPPER C F, GIELENS D R S, COURTIN C M. A new method to isolate and separate small and large starch granules from barley and malt. Food Hydrocolloids, 2021, 120:106907.
doi: 10.1016/j.foodhyd.2021.106907 |
[14] |
GUO Q, HE Z H, XIA X C, QU Y Y, ZHANG Y. Effects of wheat starch granule size distribution on qualities of Chinese steamed bread and raw white noodles. Cereal Chemistry, 2014, 91(6):623-630.
doi: 10.1094/CCHEM-01-14-0015-R |
[15] |
TANG H J, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Some physicochemical properties of small-, medium-, and large- granule starches in fractions of waxy barley grain. Cereal Chemistry, 2000, 77(1):27-31.
doi: 10.1094/CCHEM.2000.77.1.27 |
[16] |
DHITAL S, SHRESTHA A K, GIDLEY M J. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 2010, 82(2):480-488.
doi: 10.1016/j.carbpol.2010.05.018 |
[17] |
XIAO H X, WANG S Y, XU W Z, YIN Y Q, XU D, ZHANG L, LIU G Q, LUO F J, SUN S G, LIN Q L, XU B C. The study on starch granules by using darkfield and polarized light microscopy. Journal of Food Composition and Analysis, 2020, 92:103576.
doi: 10.1016/j.jfca.2020.103576 |
[18] |
MEI J Y, ZHANG L, LIN Y, LI S B, BAI C H, FU Z. Pasting, rheological, and thermal properties and structural characteristics of large and small Arenga Pinnata starch granules. Starch-Stärke, 2020, 72(11):1900293.
doi: 10.1002/star.v72.11-12 |
[19] |
LIU T X, MA M X, GUO K, HU G L, ZHANG L, WEI C X. Structural, thermal, and hydrolysis properties of large and small granules from C-type starches of four Chinese chestnut varieties. International Journal of Biological Macromolecules, 2019, 137:712-720.
doi: 10.1016/j.ijbiomac.2019.07.023 |
[20] |
GAO L C, WANG H L, WAN C X, LENG J J, WANG P K, YANG P, GAO X L, GAO J F. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench) starches affected by molecular structure. International Journal of Biological Macromolecules, 2020, 156:120-126. doi: 10.1016/j.ijbiomac.2020.04.064.
doi: 10.1016/j.ijbiomac.2020.04.064 |
[21] |
LIN L S, HUANG J, ZHAO L X, WANG J, WANG Z F, WEI C X. Effect of granule size on the properties of lotus rhizome C-type starch. Carbohydrate Polymers, 2015, 134:448-457. doi: 10.1016/j.carbpol. 2015.08.026.
doi: 10.1016/j.carbpol. 2015.08.026 |
[22] |
AL-ANSI W, MUSHTAQ B S, MAHDI A A, AL-MAQTARI Q A, AL-ADEEB A, AHMED A, FAN M C, LI Y, QIAN H F, LIU J X, WANG L. Molecular structure, morphological, and physicochemical properties of highlands barley starch as affected by natural fermentation. Food Chemistry, 2021, 356:129665. doi: 10.1016/j.foodchem.2021.129665.
doi: 10.1016/j.foodchem.2021.129665 |
[23] | 张慧, 洪雁, 顾正彪, 汪振炯. 3种谷物全粉中淀粉的消化性及影响因素. 食品与发酵工业, 2012, 38(11):26-31. |
ZHANG H, HONG Y, GU Z B, WANG Z J. Starch digestibility and the influence factors in three grain flours. Food and Fermentation Industries, 2012, 38(11):26-31. (in Chinese) | |
[24] |
HANASHIRO I, ABE J, HIZUKURI S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion- exchange chromatography. Carbohydrate Research, 1996, 283(2):151-159.
doi: 10.1016/0008-6215(95)00408-4 |
[25] |
LI C Y, ZHOU D D, FAN T, WANG M Y, ZHU M, DING J G, ZHU X K, GUO W S, SHI Y C. Structure and physicochemical properties of two waxy wheat starches. Food Chemistry, 2020, 318:126492. doi: 10.1016/j.foodchem.2020.126492.
doi: 10.1016/j.foodchem.2020.126492 |
[26] |
KASEMWONG K, PIYACHOMKWAN K, WANSUKSRI R, SRIROTH K. Granule sizes of Canna (Canna edulis) starches and their reactivity toward hydration, enzyme hydrolysis and chemical substitution. Starch/Staerke, 2008, 60(11):624-633.
doi: 10.1002/star.v60:11 |
[27] |
GAO J, VASANTHAN T, HOOVER R. Isolation and characterization of high-purity starch isolates from regular, waxy, and high-amylose hulless barley grains. Cereal Chemistry, 2009, 86(2):157-163.
doi: 10.1094/CCHEM-86-2-0157 |
[28] |
DHITAL S, SHRESTHA A K, HASJIM J, GIDLEY M J. Physicochemical and structural properties of maize and potato starches as a function of granule size. Journal of Agricultural and Food Chemistry, 2011, 59(18):10151-10161. doi: 10.1021/jf202293s.
doi: 10.1021/jf202293s |
[29] |
TANG H J, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydrate Research, 2001, 330(2):241-248.
doi: 10.1016/S0008-6215(00)00292-5 |
[30] |
JAMES M G, DENYER K, MYERS A M. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6(3):215-222. doi: 10.1016/s1369-5266(03)00042-6.
doi: 10.1016/s1369-5266(03)00042-6 |
[31] |
CHEN G X, ZHU J T, ZHOU J W, SUBBURAJ S, ZHANG M, HAN C X, HAO P C, LI X H, YAN Y M. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: Comparison with common wheat and Aegilops peregrina. BMC Plant Biology, 2014, 14:198. doi: 10.1186/s12870-014-0198-2.
doi: 10.1186/s12870-014-0198-2 |
[32] |
CAO H, YAN X, CHEN G X, ZHOU J W, LI X H, MA W J, YAN Y M. Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa. Journal of Proteomics, 2015, 112:95-112. doi: 10.1016/j.jprot.2014.08.002.
doi: 10.1016/j.jprot.2014.08.002 |
[33] | WEI C X, ZHANG J, ZHOU W D, CHEN Y F, XU R G. Development of small starch granule in barley endosperm. Acta Agronomica Sinica, 2008, 34(10):1788-1796. |
[34] |
KUMARI S, YADAV B S, YADAV R B. Effect of nano-conversion on morphological, rheological and thermal properties of barley starch. Journal of Food Science and Technology, 2022, 59(2):467-477. doi: 10.1007/s13197-021-05029-0.
doi: 10.1007/s13197-021-05029-0 |
[35] |
LI W H, GAO J M, WU G, ZHENG J M, OUYANG S H, LUO Q G. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids, 2016, 60:364-373.
doi: 10.1016/j.foodhyd.2016.04.011 |
[36] |
SONG Y, JANE J. Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydrate Polymers, 2000, 41(4):365-377.
doi: 10.1016/S0144-8617(99)00098-3 |
[37] |
KÄLLMAN A, VAMADEVAN V, BERTOFT E, KOCH K, SEETHARAMAN K, ÅMAN P, ANDERSSON R. Thermal properties of barley starch and its relation to starch characteristics. International Journal of Biological Macromolecules, 2015, 81:692-700. doi: 10.1016/j.ijbiomac.2015.08.068.
doi: 10.1016/j.ijbiomac.2015.08.068 |
[38] |
ZHAO X, ANDERSSON M, ANDERSSON R. A simplified method of determining the internal structure of amylopectin from barley starch without amylopectin isolation. Carbohydrate Polymers, 2021, 255:117503. doi: 10.1016/j.carbpol.2020.117503.
doi: 10.1016/j.carbpol.2020.117503 |
[39] |
李春燕, 封超年, 王亚雷, 张容, 郭文善, 朱新开, 彭永欣. 不同小麦品种支链淀粉链长分配及其与淀粉理化特性的关系. 作物学报, 2007, 33(8):1240-1245. doi: 10.3321/j.issn:0496-3490.2007.08.004.
doi: 10.3321/j.issn:0496-3490.2007.08.004 |
LI C Y, FENG C N, WANG Y L, ZHANG R, GUO W S, ZHU X K, PENG Y X. Chain length distribution of debranched amylopectin and its relationship with physicochemical properties of starch in different wheat cultivars. Acta Agronomica Sinica, 2007, 33(8):1240-1245. doi: 10.3321/j.issn:0496-3490.2007.08.004. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2007.08.004 |
|
[40] |
LI C, GONG B, HUANG T, YU W W. In vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains. Carbohydrate Polymers, 2021, 254:117275. doi: 10.1016/j.carbpol.2020.117275.
doi: 10.1016/j.carbpol.2020.117275 |
[41] |
REGINA A, BLAZEK J, GILBERT E, FLANAGAN B M, GIDLEY M J, CAVANAGH C, RAL J P, LARROQUE O, BIRD A R, LI Z, MORELL M K. Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydrate Polymers, 2012, 89(3):979-991. doi: 10.1016/j.carbpol.2012.04.054.
doi: 10.1016/j.carbpol.2012.04.054 |
[42] |
MORELL M K, KOSAR-HASHEMI B, CMIEL M, SAMUEL M S, CHANDLER P, RAHMAN S, BULEON A, BATEY I L, LI Z. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal, 2003, 34(2):173-185. doi: 10.1046/j.1365-313x.2003.01712.x.
doi: 10.1046/j.1365-313x.2003.01712.x |
[43] |
TANG H J, WATANABE K, MITSUNAGA T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydrate Polymers, 2002, 49(2):217-224.
doi: 10.1016/S0144-8617(01)00329-0 |
[44] |
GEERA B P, NELSON J E, SOUZA E, HUBER K C. Composition and properties of A- and B-type starch granules of wild-type, partial waxy, and waxy soft wheat. Cereal Chemistry, 2006, 83(5):551-557.
doi: 10.1094/CC-83-0551 |
[45] |
LIN L S, GUO D W, HUANG J, ZHANG X D, ZHANG L, WEI C X. Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 2016, 58:246-254.
doi: 10.1016/j.foodhyd.2016.03.001 |
[46] |
RAMADOSS B R, GANGOLA M P, AGASIMANI S, JAISWAL S, VENKATESAN T, SUNDARAM G R, CHIBBAR R N. Starch Granule size and amylopectin chain length influence starch in vitro enzymatic digestibility in selected rice mutants with similar amylose concentration. Journal of Food Science and Technology, 2019, 56(1):391-400. doi: 10.1007/s13197-018-3500-8.
doi: 10.1007/s13197-018-3500-8 |
[1] | 王钰麟,雷琳,熊文文,叶发银,赵国华. 蒸煮-老化预处理对炒制青稞粉理化性质及体外淀粉消化的影响[J]. 中国农业科学, 2021, 54(19): 4207-4217. |
[2] | 余可,刘磊,张瑞芬,池建伟,贾栩超,张名位. 预酶解-滚筒干燥加工工艺对全麦片品质的影响[J]. 中国农业科学, 2020, 53(6): 1256-1268. |
[3] | 贾丰,郭玉蓉,杨曦,刘冬,李洁. 发酵苹果渣多糖分离纯化、结构及其与加工特性的关系[J]. 中国农业科学, 2017, 50(10): 1873-1884. |
[4] | 方 勇,王红盼,裴 斐,马 宁,汤晓智,杨文建,胡秋辉. 挤压膨化对金针菇-发芽糙米复配粉的消化特性及挥发性物质的影响[J]. 中国农业科学, 2016, 49(23): 4606-4618. |
[5] | 贾 丰,郭玉蓉,刘 冬,杨 曦,邓 红,孟永宏. 发酵对苹果渣多糖加工特性的影响[J]. 中国农业科学, 2016, 49(19): 3831-3844. |
[6] | 王春青1, 李侠1, 张春晖1, 陈旭华1, 孙红梅1, 李银1, 李海1, 何雷堂2. 肌原纤维特性与鸡肉原料肉品质的关系[J]. 中国农业科学, 2014, 47(10): 2003-2012. |
[7] | 单世华,施培,孙学振,周治国,边栋材. 开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J]. 中国农业科学, 2002, 35(2): 163-168 . |
[8] | 刘继华,尹承佾,于凤英,刘英欣,贾景农,边栋材. 开花期对棉花纤维超分子结构与纤维强度动态变化的影响[J]. 中国农业科学, 1996, 29(01): 59-65 . |
|