中国农业科学 ›› 2022, Vol. 55 ›› Issue (21): 4175-4195.doi: 10.3864/j.issn.0578-1752.2022.21.007
冯爱卿(),汪聪颖,张梅英,陈炳,封金奇,陈凯玲,汪文娟,杨健源,苏菁,曾列先,陈深,朱小源()
收稿日期:
2022-05-10
接受日期:
2022-06-03
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
朱小源
作者简介:
冯爱卿,E-mail:基金资助:
FENG AiQing(),WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan()
Received:
2022-05-10
Accepted:
2022-06-03
Online:
2022-11-01
Published:
2022-11-09
Contact:
XiaoYuan ZHU
摘要:
【目的】分析中国不同稻区白叶枯病菌(Xanthomonas oryzae pv. oryzae)致病型,建立近等基因系鉴别寄主,为白叶枯病菌群体结构田间实时准确监测、抗性品种应用以及抗病育种提供科学依据。【方法】利用中国鉴别寄主、IR24以及15个抗白叶枯病近等基因系等共21个鉴别寄主,采用人工剪叶接种方法,对2018—2021年采自广东、广西、海南、浙江、湖南、辽宁、云南共7个省(自治区)的954个单菌落分离菌株进行致病型测定,探明白叶枯病菌致病型种类、分布及毒性分化;基于测试菌株与15个近等基因系及IR24的抗感互作,应用主成分因子分析法,开展近等基因系与病菌互作的变量因子分析,构建白叶枯病菌致病型近等基因系鉴别寄主;基于抗病基因与测试菌株的抗感反应,分析抗病基因聚合效应。【结果】954个测试菌株在中国鉴别寄主上鉴定出11个致病型,包括SRRRR(I)、SSRRR(Ⅱ)、SSSRR(Ⅲ)、SSSSR(Ⅳ)、SSRRS(V)、SRSRR(Ⅵ)、SSSSS(Ⅸ)、SSSRS(新型1)、SRSRS(新型2)、SRSSS(新型3)以及SSRSS(新型4),占测试菌株的比率分别为11.53%、4.82%、7.34%、6.18%、7.23%、1.05%、59.96%、1.57%、0.10%、0.10%、0.10%。Ⅸ型菌作为致病性最广的强毒菌系已上升为华南和长江中下游湖南和浙江稻区的优势致病型,西南稻区的云南以Ⅳ型菌为主,东北稻区的辽宁以I型菌为主。15个水稻抗白叶枯病近等基因系对954个菌株的抗感性分析结果表明,测试的15个近等基因系可分为5种类型,第Ⅰ类为高感基因系,包括IRBB1、IRBB2、IRBB10、IRBB11、IRBB4;第Ⅱ类为中感基因系,包括IRBB3、IRBB203、IRBB14;第Ⅲ类为中抗基因系,包括IRBB8、IRBB13;第Ⅳ类为抗病基因系,有IRBB21;第Ⅴ类为高抗基因系,包括IRBB5、IRBB7、CBB23、GDBB23;测试菌株中,出现可侵染抗病基因xa5的有42个、Xa7的有34个、Xa23的有31个。对以白叶枯病近等基因系为主的16个品种(系)与954个菌株组成的抗感互作变量数据矩阵进行因子分析,以解释总变量>85.0%为界,提取出8个主成分因子,组建了以近等基因系为主的10个品种(系)组成白叶枯病菌近等基因系鉴别寄主,按其对变量方差贡献大小,这些寄主分别为IRBB10(Xa10)、IRBB4(Xa4)、GDBB23(Xa23)、IRBB5(xa5)、IRBB7(Xa7)、IRBB21(Xa21)、IR24(Xa18)、IRBB13(xa13)、IRBB3(Xa3)、金刚30;新鉴别寄主可将954个测试菌株划分为55个致病型,对测试稻区的白叶枯病菌菌株表现出较好的鉴别力。基因聚合联合抗性分析表明,不同抗病基因聚合对病菌的抗性频率有一定的提升,不同抗病基因对测试菌株的抗性具有一定的互补性。【结论】监测稻区的白叶枯病菌系趋向多样化,毒性分化明显,强毒菌系Ⅸ型菌在部分稻区已上升为优势致病型,侵染xa5、Xa7及Xa23等广谱抗性基因的菌株有上升趋势;抗病基因聚合可拓宽品种对病原菌系的抗性谱,是培育广谱抗性品种的有效途径;近等基因系鉴别寄主的建立与应用可为白叶枯病发生流行的精准监测以及田间实时预警提供技术支撑。
冯爱卿,汪聪颖,张梅英,陈炳,封金奇,陈凯玲,汪文娟,杨健源,苏菁,曾列先,陈深,朱小源. 中国水稻主产区白叶枯病菌致病型分析及近等基因系鉴别寄主的构建[J]. 中国农业科学, 2022, 55(21): 4175-4195.
FENG AiQing,WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan. Pathotype Analysis of Xanthomonas oryzae pv. oryzae in Main Rice Producing Regions of China and Establishment of Differential Hosts of Near-Isogenic Lines[J]. Scientia Agricultura Sinica, 2022, 55(21): 4175-4195.
表1
测试菌株来源"
年份Year | 生态区Ecological region | 采集地Origin | 菌株数Number of strains |
---|---|---|---|
2018 | 华南稻区South China rice region | 广东Guangdong | 89 |
广西Guangxi | 16 | ||
海南Hainan | 13 | ||
长江中下游稻区 Middle and lower reaches of the Yangtze River rice region | 湖南Hunan | 0 | |
浙江Zhejiang | 47 | ||
西南稻区Southwest China rice region | 云南Yunnan | 10 | |
东北稻区Northeast China rice region | 辽宁Liaoning | 18 | |
2019 | 华南稻区South China rice region | 广东Guangdong | 185 |
广西Guangxi | 45 | ||
海南Hainan | 0 | ||
长江中下游稻区 Middle and lower reaches of the Yangtze River rice region | 湖南Hunan | 10 | |
浙江Zhejiang | 43 | ||
西南稻区Southwest China rice region | 云南Yunnan | 0 | |
东北稻区Northeast China rice region | 辽宁Liaoning | 5 | |
2020 | 华南稻区South China rice region | 广东Guangdong | 140 |
广西Guangxi | 7 | ||
海南Hainan | 1 | ||
长江中下游稻区 Middle and lower reaches of the Yangtze River rice region | 湖南Hunan | 4 | |
浙江Zhejiang | 23 | ||
西南稻区Southwest China rice region | 云南Yunnan | 1 | |
东北稻区Northeast China rice region | 辽宁Liaoning | 3 | |
2021 | 华南稻区South China rice region | 广东Guangdong | 36 |
广西Guangxi | 65 | ||
海南Hainan | 0 | ||
长江中下游稻区 Middle and lower reaches of the Yangtze River rice region | 湖南Hunan | 0 | |
浙江Zhejiang | 193 | ||
西南稻区Southwest China rice region | 云南Yunnan | 0 | |
东北稻区Northeast China rice region | 辽宁Liaoning | 0 |
表2
测试菌株在中国鉴别寄主上的致病反应"
致病型 Pathotype | 鉴别寄主反应Phynotypes of differential host to the strains | 各致病型的菌株数Number of strains of each pathotype | 各致病型发生频率Percentage of each pathotype (%) | ||||
---|---|---|---|---|---|---|---|
CBBD1 | CBBD2 | CBBD3 | CBBD4 | CBBD5 | |||
Ⅰ | S | R | R | R | R | 110 | 11.53 |
Ⅱ | S | S | R | R | R | 46 | 4.82 |
Ⅲ | S | S | S | R | R | 70 | 7.34 |
Ⅳ | S | S | S | S | R | 59 | 6.18 |
Ⅴ | S | S | R | R | S | 69 | 7.23 |
Ⅵ | S | R | S | R | R | 10 | 1.05 |
Ⅸ | S | S | S | S | S | 572 | 59.96 |
新型1 New pathotype 1 | S | S | S | R | S | 15 | 1.57 |
新型2 New pathotype 2 | S | R | S | R | S | 1 | 0.10 |
新型3 New pathotype 3 | S | R | S | S | S | 1 | 0.10 |
新型4 New pathotype 4 | S | S | R | S | S | 1 | 0.10 |
合计Total | 954 | 100.00 |
表3
2018—2021年中国7省(自治区)水稻白叶枯病菌致病型和发生频率"
年份Year | 菌株数Number of strains | 各致病型发生频率Percentage of each pathotype (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅸ | 新型1 New pathotype 1 | 新型2 New pathotype 2 | 新型3 New pathotype 3 | 新型4 New pathotype 4 | ||
2018 | 193 | 15.03 | 3.11 | 7.25 | 7.77 | 7.77 | 0.52 | 57.51 | 0.52 | 0 | 0.52 | 0 |
2019 | 288 | 11.46 | 9.03 | 10.42 | 6.60 | 11.81 | 0 | 50.69 | 0 | 0 | 0 | 0 |
2020 | 179 | 17.32 | 6.70 | 7.26 | 6.70 | 6.15 | 0 | 53.07 | 2.23 | 0 | 0 | 0.56 |
2021 | 294 | 5.78 | 0.68 | 4.42 | 4.42 | 3.06 | 3.06 | 74.83 | 3.40 | 0.34 | 0 | 0 |
表4
1999—2021年华南水稻白叶枯病菌致病型及发生频率"
年份Year | 菌株数Number of strains | 各致病型发生频率Percentage of each pathotype (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅸ | 新型1 New pathotype 1 | 新型2 New pathotype 2 | 新型3 New pathotype 3 | 新型4 New pathotype 4 | ||
1999 | 30 | 16.70 | 20.00 | 20.00 | 26.70 | 16.70 | 0 | 0 | 0 | 0 | 0 | 0 |
2000 | 43 | 18.60 | 20.90 | 16.30 | 23.30 | 20.90 | 0 | 0 | 0 | 0 | 0 | 0 |
2004 | 53 | 17.00 | 22.60 | 11.30 | 24.50 | 18.90 | 0 | 5.70 | 0 | 0 | 0 | 0 |
2014 | 150 | 14.00 | 15.30 | 7.30 | 19.30 | 27.40 | 0 | 16.67 | 0 | 0 | 0 | 0 |
2015 | 68 | 44.12 | 7.35 | 0.00 | 2.94 | 20.59 | 0 | 25.00 | 0 | 0 | 0 | 0 |
2016 | 50 | 16.00 | 10.00 | 6.00 | 22.00 | 26.00 | 0 | 20.00 | 0 | 0 | 0 | 0 |
2017 | 60 | 16.67 | 11.67 | 8.33 | 18.34 | 23.34 | 0 | 21.67 | 0 | 0 | 0 | 0 |
2018 | 118 | 9.32 | 4.24 | 5.08 | 5.08 | 12.71 | 0.85 | 61.02 | 0.85 | 0 | 0.85 | 0 |
2019 | 230 | 10.43 | 10.43 | 10.87 | 6.09 | 14.78 | 0 | 47.39 | 0 | 0 | 0 | 0 |
2020 | 148 | 15.54 | 6.76 | 8.11 | 7.43 | 6.76 | 0 | 52.70 | 2.03 | 0 | 0 | 0.68 |
2021 | 101 | 5.94 | 0.99 | 3.96 | 1.98 | 8.91 | 0.99 | 72.28 | 4.95 | 0 | 0 | 0 |
表5
15个水稻白叶枯病近等基因系对954个菌株的抗性频率"
近等基因系 Near-isogenic line | 基因 Gene | 抗性频率 Resistance frequency (%) |
---|---|---|
IRBB1 | Xa1 | 15.62 |
IRBB2 | Xa2 | 15.20 |
IRBB3 | Xa3 | 21.91 |
IRBB203 | Xa3 | 25.26 |
IRBB4 | Xa4 | 18.13 |
IRBB5 | xa5 | 95.60 |
IRBB7 | Xa7 | 96.44 |
IRBB8 | Xa8 | 37.21 |
IRBB10 | Xa10 | 14.47 |
IRBB11 | Xa11 | 13.21 |
IRBB13 | xa13 | 34.91 |
IRBB14 | Xa14 | 22.54 |
IRBB21 | Xa21 | 79.45 |
CBB23 | Xa23 | 96.75 |
GDBB23 | Xa23 | 96.86 |
表6
不同抗性类型的近等基因系对954个白叶枯病菌菌株的抗性频率"
分类 Category | 单基因系 Monogenic line | 基因 Gene | 平均抗性频率 Average resistance frequency (%) |
---|---|---|---|
第Ⅰ类Class I | IRBB1、IRBB2、IRBB10、IRBB11、IRBB4 | Xa1、Xa2、Xa10、Xa11、Xa4 | 15.32 |
第Ⅱ类Class Ⅱ | IRBB3、IRBB203、IRBB14 | Xa3、Xa14 | 23.24 |
第Ⅲ类Class Ⅲ | IRBB8、IRBB13 | Xa8、xa13 | 36.06 |
第Ⅳ类Class Ⅳ | IRBB21 | Xa21 | 79.45 |
第Ⅴ类Class Ⅴ | IRBB5、IRBB7、CBB23、GDBB23 | xa5、Xa7、Xa23 | 96.41 |
表7
可侵染Xa23菌株对白叶枯病广谱抗性基因的毒性"
来源Origin | 菌号Number of bacteria | IRBB5 | IRBB7 | IRBB21 | CBB23 |
---|---|---|---|---|---|
广东广州Guangzhou, Guangdong | 2848 | R | R | R | S |
2850 | R | R | R | S | |
2851 | R | R | R | S | |
2852 | R | R | R | S | |
2853 | R | R | R | S | |
2854 | R | R | R | S | |
广东四会Sihui, Guangdong | 1387 | S | R | R | S |
1392 | R | R | R | S | |
1394 | R | R | R | S | |
1389 | R | R | R | S | |
1390 | R | R | R | S | |
1391 | R | R | R | S | |
广东新兴Xinxing, Guangdong | 2614 | R | R | R | S |
广东珠海Zhuhai, Guangdong | 2749 | R | R | R | S |
广西靖西Jingxi, Guangxi | 2821 | S | S | R | S |
2824 | S | R | R | S | |
湖南浏阳Liuyang, Hunan | 1823 | R | R | S | S |
浙江常山Changshan, Zhejiang | 595 | R | R | R | S |
890 | R | R | R | S | |
891 | R | R | R | S | |
浙江忂州Quzhou, Zhejiang | 579 | R | R | S | S |
855 | R | R | S | S | |
856 | R | R | S | S | |
859 | R | R | R | S | |
1252 | R | R | S | S | |
1254 | R | R | R | S | |
1792 | R | R | S | S | |
浙江台州Taizhou, Zhejiang | 2420 | R | R | R | S |
2491 | R | R | R | S | |
浙江温岭Wenling, Zhejiang | 2573 | R | R | R | S |
浙江仙居 Xianju, Zhejiang | 2581 | S | S | R | S |
表9
16个近等基因系与954个白叶枯病菌菌株互作的总变异及其因子解释"
成分因子Component | 因子提取Extraction of factors | 旋转后因子的提取Extraction of factors after rotation | |||||
---|---|---|---|---|---|---|---|
特征值 Eigenvalues | 变异量 Amount of variation (%) | 累计变异量 Cumulative variance (%) | 特征值 Eigenvalues | 变异量 Amount of variation (%) | 累计变异量 Cumulative variance (%) | ||
1 | 6.572 | 41.076 | 41.076 | 5.078 | 31.739 | 31.739 | |
2 | 2.034 | 12.713 | 53.789 | 1.996 | 12.477 | 44.217 | |
3 | 1.725 | 10.779 | 64.569 | 1.653 | 10.328 | 54.545 | |
4 | 0.948 | 5.927 | 70.495 | 1.489 | 9.306 | 63.851 | |
5 | 0.769 | 4.806 | 75.301 | 1.017 | 6.358 | 70.209 | |
6 | 0.648 | 4.049 | 79.350 | 0.961 | 6.003 | 76.212 | |
7 | 0.572 | 3.578 | 82.929 | 0.936 | 5.849 | 82.061 | |
8 | 0.462 | 2.886 | 85.815 | 0.601 | 3.753 | 85.815 | |
9 | 0.425 | 2.655 | 88.470 | ||||
10 | 0.396 | 2.477 | 90.947 | ||||
11 | 0.365 | 2.281 | 93.228 | ||||
12 | 0.346 | 2.163 | 95.391 | ||||
13 | 0.289 | 1.807 | 97.198 | ||||
14 | 0.255 | 1.596 | 98.794 | ||||
15 | 0.176 | 1.101 | 99.896 | ||||
16 | 1.67E-02 | 0.104 | 100 |
表10
16个近等基因系与954个白叶枯病菌菌株互作的旋转分量矩阵"
近等基因系<BOLD>N</BOLD>ear-isogenic line | 成分因子Component | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
IRBB1 (Xa1) | 0.851 | 5.67E-02 | 6.68E-02 | -9.91E-02 | 6.70E-02 | -6.84E-02 | 9.87E-02 | -8.39E-02 |
IRBB2 (Xa2) | 0.859 | 3.50E-02 | 8.06E-02 | -8.52E-02 | 5.44E-02 | -0.134 | 2.94E-02 | -8.06E-02 |
IRBB3 (Xa3) | 0.779 | -7.25E-03 | 6.24E-02 | -6.42E-02 | 6.87E-02 | -0.124 | 1.42E-02 | 0.337 |
IRBB203 (Xa3) | 0.703 | 5.54E-02 | 6.03E-02 | 8.40E-02 | -0.191 | -2.99E-02 | -0.59 | 0.238 |
IRBB4 (Xa4) | 0.798 | -9.38E-02 | 4.57E-02 | -3.55E-02 | -0.19 | -0.162 | 0.124 | 9.91E-02 |
IRBB5 (xa5) | 5.83E-02 | 0.344 | 0.789 | 0.134 | -0.115 | 0.174 | 0.155 | 7.14E-02 |
IRBB7 (Xa7) | 4.85E-02 | 0.292 | 0.828 | 0.158 | -7.21E-02 | 6.90E-02 | -6.10E-03 | -5.27E-02 |
IRBB8 (Xa8) | 0.673 | -3.92E-02 | -0.247 | 0.185 | -0.334 | 0.366 | 1.63E-02 | -0.229 |
IRBB10 (Xa10) | 0.864 | 1.45E-02 | 2.67E-02 | -0.111 | 6.76E-02 | -8.65E-02 | 0.177 | -4.02E-02 |
IRBB11 (Xa11) | 0.837 | -5.39E-02 | 3.58E-02 | -0.163 | 0.174 | -0.104 | 0.161 | 2.07E-02 |
IRBB13 (xa13) | 0.661 | -8.83E-02 | -0.353 | 0.115 | -0.265 | 0.351 | 0.201 | 0.202 |
IRBB14 (Xa14) | 0.763 | 1.03E-02 | 3.52E-02 | 5.75E-02 | -0.134 | -0.198 | -0.194 | -0.402 |
IRBB21 (Xa21) | 0.303 | -6.27E-02 | -0.145 | 0.866 | 0.339 | -0.116 | 5.00E-02 | 2.31E-02 |
CBB23 (Xa23) | 1.95E-02 | 0.947 | -0.302 | -5.64E-03 | 1.16E-02 | -3.72E-02 | 1.27E-02 | 8.76E-03 |
GDBB23 (Xa23) | 1.54E-02 | 0.948 | -0.299 | -1.61E-02 | 8.89E-03 | -3.56E-02 | 1.24E-02 | 7.44E-03 |
IR24 (Xa18) | 0.596 | 4.11E-02 | 5.85E-02 | -0.188 | 0.562 | 0.465 | -0.188 | -5.40E-02 |
表11
测试菌株在新鉴别寄主上的致病反应"
序号 Serial number | 致病型 <BOLD>P</BOLD>athotype | 寄主反应Host response | 致病谱Pathogenicity spectrum (%) | 各致病型的菌株数 Number of strains of each pathotype | 各致病型发生频率 Percentage of each pathotype (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GDBB23 | IRBB7 | IRBB5 | IRBB21 | IRBB13 | IRBB3 | IRBB4 | IRBB10 | IR24 | CBBD1 | |||||
R1 | RRRRRRRRRS | R | R | R | R | R | R | R | R | R | S | 9.09 | 36 | 3.77 |
R2 | RRRRRRRRSS | R | R | R | R | R | R | R | R | S | S | 18.18 | 59 | 6.18 |
R3 | RRRRRRRSRS | R | R | R | R | R | R | R | S | R | S | 18.18 | 4 | 0.42 |
R4 | RRRRRRSRRS | R | R | R | R | R | R | S | R | R | S | 18.18 | 9 | 0.94 |
R5 | RRRRSRRRRS | R | R | R | R | S | R | R | R | R | S | 18.18 | 1 | 0.10 |
R6 | SRRRRRRRRS | S | R | R | R | R | R | R | R | R | S | 18.18 | 1 | 0.10 |
R7 | RRRRRRRSSS | R | R | R | R | R | R | R | S | S | S | 27.27 | 15 | 1.57 |
R8 | RRRRRRSRSS | R | R | R | R | R | R | S | R | S | S | 27.27 | 10 | 1.05 |
R9 | RRRRRRSSRS | R | R | R | R | R | R | S | S | R | S | 27.27 | 3 | 0.31 |
R10 | RRRRRSRRSS | R | R | R | R | R | S | R | R | S | S | 27.27 | 6 | 0.63 |
R11 | RRRRRSRSRS | R | R | R | R | R | S | R | S | R | S | 27.27 | 1 | 0.10 |
R12 | RRRRRSSRRS | R | R | R | R | R | S | S | R | R | S | 27.27 | 2 | 0.21 |
R13 | RRRRSRRRSS | R | R | R | R | S | R | R | R | S | S | 27.27 | 2 | 0.21 |
R14 | SRRRRRRRSS | S | R | R | R | R | R | R | R | S | S | 27.27 | 2 | 0.21 |
R15 | RRRRRRSSSS | R | R | R | R | R | R | S | S | S | S | 36.36 | 10 | 1.05 |
R16 | RRRRRSRSSS | R | R | R | R | R | S | R | S | S | S | 36.36 | 22 | 2.31 |
R17 | RRRRRSSRSS | R | R | R | R | R | S | S | R | S | S | 36.36 | 3 | 0.31 |
R18 | RRRRRSSSRS | R | R | R | R | R | S | S | S | R | S | 36.36 | 2 | 0.21 |
R19 | RRRRSRRSSS | R | R | R | R | S | R | R | S | S | S | 36.36 | 5 | 0.52 |
R20 | RRRRSRSRSS | R | R | R | R | S | R | S | R | S | S | 36.36 | 3 | 0.31 |
R21 | RRRRSRSSRS | R | R | R | R | S | R | S | S | R | S | 36.36 | 2 | 0.21 |
R22 | RRRRRSSSSS | R | R | R | R | R | S | S | S | S | S | 45.45 | 90 | 9.43 |
R23 | RRRRSRSSSS | R | R | R | R | S | R | S | S | S | S | 45.45 | 31 | 3.25 |
R24 | RRRRSSRSSS | R | R | R | R | S | S | R | S | S | S | 45.45 | 5 | 0.52 |
R25 | RRRRSSSRSS | R | R | R | R | S | S | S | R | S | S | 45.45 | 2 | 0.21 |
R26 | RRRRSSSSRS | R | R | R | R | S | S | S | S | R | S | 45.45 | 1 | 0.10 |
R27 | RRRSRRSSSS | R | R | R | S | R | R | S | S | S | S | 45.45 | 3 | 0.31 |
R28 | RRRSRSRSSS | R | R | R | S | R | S | R | S | S | S | 45.45 | 2 | 0.21 |
R29 | RSSRRSRRSS | R | S | S | R | R | S | R | R | S | S | 45.45 | 1 | 0.10 |
R30 | SRRRRSRSSS | S | R | R | R | R | S | R | S | S | S | 45.45 | 1 | 0.10 |
R31 | SRSRRRRSSS | S | R | S | R | R | R | R | S | S | S | 45.45 | 1 | 0.10 |
R32 | RRRRSSSSSS | R | R | R | R | S | S | S | S | S | S | 54.55 | 370 | 38.78 |
R33 | RRRSRSSSSS | R | R | R | S | R | S | S | S | S | S | 54.55 | 18 | 1.89 |
R34 | RRRSSRSSSS | R | R | R | S | S | R | S | S | S | S | 54.55 | 8 | 0.84 |
R35 | RRRSSSRSSS | R | R | R | S | S | S | R | S | S | S | 54.55 | 3 | 0.31 |
序号 Serial number | 致病型 <BOLD>P</BOLD>athotype | 寄主反应Host response | 致病谱Pathogenicity spectrum (%) | 各致病型的菌株数 Number of strains of each pathotype | 各致病型发生频率 Percentage of each pathotype (%) | |||||||||
GDBB23 | IRBB7 | IRBB5 | IRBB21 | IRBB13 | IRBB3 | IRBB4 | IRBB10 | IR24 | CBBD1 | |||||
R36 | RRSRRSSSSS | R | R | S | R | R | S | S | S | S | S | 54.55 | 2 | 0.21 |
R37 | RSRRRSSSSS | R | S | R | R | R | S | S | S | S | S | 54.55 | 4 | 0.42 |
R38 | RSSRRRSSSS | R | S | S | R | R | R | S | S | S | S | 54.55 | 1 | 0.10 |
R39 | RSSSRSRRSS | R | S | S | S | R | S | R | R | S | S | 54.55 | 1 | 0.10 |
R40 | SRRRRSSSSS | S | R | R | R | R | S | S | S | S | S | 54.55 | 2 | 0.21 |
R41 | SRRRSRSSSS | S | R | R | R | S | R | S | S | S | S | 54.55 | 1 | 0.10 |
R42 | SRRRSSRSSS | S | R | R | R | S | S | R | S | S | S | 54.55 | 2 | 0.21 |
R43 | SSSRRRRSSS | S | S | S | R | R | R | R | S | S | S | 54.55 | 1 | 0.10 |
R44 | RRRSSSSSSS | R | R | R | S | S | S | S | S | S | S | 63.64 | 148 | 15.51 |
R45 | RRSRSSSSSS | R | R | S | R | S | S | S | S | S | S | 63.64 | 10 | 1.05 |
R46 | RSRRSSSSSS | R | S | R | R | S | S | S | S | S | S | 63.64 | 2 | 0.21 |
R47 | RSRSRSSSSS | R | S | R | S | R | S | S | S | S | S | 63.64 | 1 | 0.10 |
R48 | RSSRRSSSSS | R | S | S | R | R | S | S | S | S | S | 63.64 | 19 | 1.99 |
R49 | SRRRSSSSSS | S | R | R | R | S | S | S | S | S | S | 63.64 | 12 | 1.26 |
R50 | SRRSSSRSSS | S | R | R | S | S | S | R | S | S | S | 63.64 | 2 | 0.21 |
R51 | SSSRRRSSSS | S | S | S | R | R | R | S | S | S | S | 63.64 | 1 | 0.10 |
R52 | RRSSSSSSSS | R | R | S | S | S | S | S | S | S | S | 72.73 | 4 | 0.42 |
R53 | RSRSSSSSSS | R | S | R | S | S | S | S | S | S | S | 72.73 | 3 | 0.31 |
R54 | SRRSSSSSSS | S | R | R | S | S | S | S | S | S | S | 72.73 | 3 | 0.31 |
R55 | SRSRSSSSSS | S | R | S | R | S | S | S | S | S | S | 72.73 | 1 | 0.10 |
表12
新鉴别寄主体系与国内其他鉴别体系对954个水稻白叶枯病菌菌株的致病型比较"
分类 Category | 鉴别寄主数 <BOLD>N</BOLD>umber of differential hosts | 鉴别寄主名称 Name of differential hosts | 鉴定出的致病型个数 Number of pathotypes identified |
---|---|---|---|
本研究新鉴别寄主 New differential hosts in present study | 10 | CBBD1、IR24、IRBB10、IRBB4、IRBB3、IRBB13、IRBB21、IRBB5、IRBB7、GDBB23 | 55 |
中国鉴别寄主Chinese differential hosts | 5 | CBBD1、CBBD2、CBBD3、CBBD4、CBBD5 | 11 |
杨万风等建立的鉴别寄主 Differential hosts developed by YANG WanFeng et al.[ | 6 | IRBB5、IRBB13、IRBB3、IRBB14、IRBB2、IR24 | 33 |
陈功友等建立的鉴别寄主 Differential hosts developed by CHEN GongYou et al.[ | 8 | IR24、IRBB3、IRBB4、IRBB5、IRBB7、IRBB13、IRBB21、CBB23 | 45 |
许志刚等建立的鉴别寄主 Differential hosts developed by XU ZhiGang et al.[ | 6 | CBBD1、IRBB14、IRBB3、IRBB4、CBBD4、IRBB5 | 23 |
夏立琼等建立的鉴别寄主 Differential hosts developed by XIA LiQiong et al.[ | 7 | IRBB3、IRBB4、IRBB5、IRBB13、IRBB21、CBB23、IR24 | 39 |
图4
测试的954个水稻白叶枯病菌菌株对各套鉴别体系的致病谱频数分布图 A:本研究新鉴别寄主New differential hosts in present study;B:杨万风等建立的鉴别寄主Differential hosts developed by YANG WanFeng et al.[21];C:中国鉴别寄主Chinese differential hosts;D:陈功友等建立的鉴别寄主Differential hosts developed by CHEN GongYou et al.[4];E:许志刚等建立的鉴别寄主Differential hosts developed by XU ZhiGang et al.[20];F:夏立琼等建立的鉴别寄主Differentials developed by XIA LiQiong et al.[22]Std.Dev:标准偏差The standard deviation;Mean:致病频数中值The median of disease frequency;N:测试菌株个数The number of test strains"
表13
白叶枯病抗病基因聚合效应"
基因 Gene | 抗性频率 <BOLD>R</BOLD>esistance frequency (%) | 聚合的基因 Polymerized gene | 基因聚合后抗性频率 Resistance frequency after gene pyramiding (%) | 提升的抗性频率 Elevated resistance frequency (%) | 聚合的基因 Polymerized gene | 基因聚合后抗性频率 Resistance frequency after gene pyramiding (%) | 提升的抗性频率 Elevated resistance frequency (%) | ||
---|---|---|---|---|---|---|---|---|---|
Xa11 | 13.21 | Xa11+Xa21 | 79.56 | 0.11 | xa5+Xa7 | 97.48 | 1.04 | ||
Xa10 | 14.47 | Xa10+Xa21 | 79.56 | 0.11 | xa5+Xa23 | 99.58 | 2.83 | ||
Xa2 | 15.20 | Xa2+Xa21 | 79.56 | 0.11 | Xa7+Xa23 | 99.79 | 3.04 | ||
Xa1 | 15.62 | Xa1+Xa21 | 79.77 | 0.32 | xa5+Xa21 | 99.48 | 3.88 | ||
Xa4 | 18.13 | Xa4+Xa21 | 80.29 | 0.84 | Xa4+Xa10+Xa21 | 80.29 | 0.84 | ||
Xa3 | 21.91 | Xa14+Xa21 | 80.29 | 0.84 | Xa10+xa13+Xa21 | 82.08 | 2.63 | ||
Xa14 | 22.54 | Xa3+Xa21 | 81.24 | 1.79 | Xa10+Xa8+Xa21 | 82.49 | 3.04 | ||
xa13 | 34.91 | Xa8+Xa21 | 82.39 | 2.94 | Xa4+xa13+Xa21 | 82.60 | 3.15 | ||
Xa8 | 37.21 | xa13+Xa21 | 82.08 | 2.63 | Xa14+xa13+Xa21 | 82.70 | 3.25 | ||
Xa21 | 79.45 | Xa10+xa13 | 35.74 | 0.83 | Xa3+xa13+Xa21 | 82.91 | 3.46 | ||
xa5 | 95.60 | Xa11+xa13 | 35.74 | 0.83 | Xa4+Xa8+Xa21 | 82.91 | 3.46 | ||
Xa7 | 96.44 | Xa1+xa13 | 36.79 | 1.88 | Xa3+Xa8+Xa21 | 83.23 | 3.78 | ||
Xa23 | 96.75 | Xa2+xa13 | 36.90 | 1.99 | Xa8+xa13+Xa21 | 83.33 | 3.88 | ||
Xa4+xa13 | 37.00 | 2.09 | xa5+xa13+Xa21 | 99.58 | 3.98 | ||||
Xa14+xa13 | 40.99 | 6.08 | xa5+Xa4+Xa21 | 99.58 | 3.98 | ||||
Xa3+xa13 | 42.77 | 7.86 | Xa4+Xa10+xa13 | 37.53 | 2.62 | ||||
Xa8+xa13 | 45.39 | 8.18 | Xa4+Xa8+xa13 | 46.44 | 9.23 | ||||
Xa10+Xa8 | 37.74 | 0.53 | Xa14+Xa8+xa13 | 48.43 | 11.22 | ||||
Xa2+Xa8 | 38.16 | 0.95 | Xa3+Xa8+xa13 | 48.74 | 11.53 | ||||
Xa11+Xa8 | 38.16 | 0.95 | Xa4+xa5+Xa7 | 97.80 | 1.36 | ||||
Xa1+Xa8 | 38.16 | 0.95 | Xa4+xa5+xa13+Xa21 | 99.58 | 3.98 | ||||
Xa4+Xa8 | 39.62 | 2.41 | Xa10+Xa4+Xa8+xa13 | 46.44 | 9.23 | ||||
Xa14+Xa8 | 41.51 | 4.30 | Xa3+Xa4+Xa8+xa13 | 49.58 | 12.37 | ||||
Xa3+Xa8 | 43.50 | 6.29 | Xa3+Xa4+Xa8+xa13+Xa21 | 84.49 | 5.04 | ||||
xa5+Xa4 | 96.02 | 0.42 | Xa4+xa5+Xa7+xa13+Xa21 | 100.00 | 3.56 |
[1] | 方中达. 水稻白叶枯病. 南京: 江苏人民出版社, 1963: 1-2. |
FANG Z D. Rice Bacterial Blight. Nanjing: Jiangsu People’s Publishing Press, 1963: 1-2. (in Chinese) | |
[2] | 章琦. 水稻白叶枯病抗性的遗传及改良. 北京: 科学出版社, 2007: 2-4. |
ZHANG Q. Genetics and Improvement of Resistance to Bacterial Blight in Rice. Beijing: Science Press, 2007: 2-4. (in Chinese) | |
[3] | LEACH J E, WHITE F F. Bacterial avirulence genes. Annual Review of Phytopathology, 1996, 34: 153-179. |
[4] | 陈功友, 徐正银, 杨阳阳, 邹丽芳, 朱勃. 我国水稻白叶枯病菌致病型划分和水稻抗病育种中应注意的问题. 上海交通大学学报(农业科学版), 2019, 37(1): 67-73. |
CHEN G Y, XU Z Y, YANG Y Y, ZOU L F, ZHU B. Classification of pathotypes of Chinese Xanthomonas oryzae pv. oryzae and resistance breeding strategies for bacterial blight. Journal of Shanghai Jiaotong University (Agricultural Science), 2019, 37(1): 67-73. (in Chinese) | |
[5] | 堀野修, 季伯衡. 水稻白叶枯病菌的小种分化与水平抗性鉴定法. 农业译文, 1991(2): 1-7. |
HORINO O, JI B H. Race differentiation of Xanthomonas oryzae pv. oryzae and horizontal resistance identification. Agricultural Translation, 1991(2): 1-7. (in Chinese) | |
[6] | NODA T, HORINO O, OHUCHI A. A survey of geographical distribution of pathogenic races of Xanthomonas campestris pv. oryzae from Japan. Proceedings of the Association for Plant Protection of Hokuriku, 1987, 35: 7-13. (in Japanese with English summary) |
[7] | NODA T, OHUCHI A. A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety, Te-tep to it. Japanese Journal of Phytopathology, 1989, 55(2): 201-207. |
[8] | MEW T W. Current status and future prospects of research on bacterial blight of rice. Annual Review of Phytopathology, 1987, 25: 359-382. |
[9] | 伍尚忠, 徐羡明, 刘景梅, 苗东华, 维拉·克鲁茨. 华南及菲律宾稻白叶枯病病原菌株致病性比较研究. 植物病理学报, 1985, 15(2): 65-72. |
WU S Z, XU X M, LIU J M, MEW T W, VERA CRUZ C M. Comparison of virulence of Xanthomonas campestris pv. oryzae in south China and in the Philippines. Acta Phytopathologica Sinica, 1985, 15(2): 65-72. (in Chinese) | |
[10] | 方中达, 许志刚, 过崇俭, 殷尚智, 伍尚忠, 徐羡明, 章琦. 中国水稻白叶枯病菌致病型的研究. 植物病理学报, 1990, 20(2): 81-88. |
FANG Z D, XU Z G, GUO C J, YIN S Z, WU S Z, XU X M, ZHANG Q. Studies on pathotypes of Xanthomonas campestris pv. oryzae in China. Acta Phytopathologica Sinica, 1990, 20(2): 81-88. (in Chinese) | |
[11] | 王春连, 章琦, 周永力, 赵炳宇. 我国长江以南地区水稻白叶枯病原菌遗传多样性分析. 中国水稻科学, 2001, 15(2): 131-136. |
WANG C L, ZHANG Q, ZHOU Y L, ZHAO B Y. Genetic diversity of pathogen Xanthomonas oryzae pv. oryzae from southern regions of Yangtze River in China. Chinese Journal of Rice Science, 2001, 15(2): 131-136. (in Chinese) | |
[12] | 曾列先, 朱小源, 杨健源, 伍圣远, 陈珍, 陈深. 广东水稻白叶枯病菌新致病型的发现及致病性测定. 广东农业科学, 2005(2): 58-59. |
ZENG L X, ZHU X Y, YANG J Y, WU S Y, CHEN Z, CHEN S. A new pathotype of Xanthomonas oryzae pv. oryzae was found and tested for pathogenicity in Guangdong. Guangdong Agricultural Sciences, 2005(2): 58-59. (in Chinese) | |
[13] | 陈深, 汪聪颖, 苏菁, 冯爱卿, 朱小源, 曾列先. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44(2): 217-222. |
CHEN S, WANG C Y, SU J, FENG A Q, ZHU X Y, ZENG L X. Differential detection and analysis of pathotypes and differentiation against Xanthomonas oryzae pv. oryzae in southern China. Journal of Plant Protection, 2017, 44(2): 217-222. (in Chinese) | |
[14] | OGAWA T, KHUSH G S. Major genes for resistance to bacterial blight in rice//Bacterial Blight of Rice. Internationa Rice Research Institute, 1989. |
[15] | OGAWA T, YAMAMOTO T, KHUSH G S, MEW T W. Breeding of near-isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. oryzae). Japanese Journal of Breeding, 1991, 41(3): 523-529. |
[16] | 章琦, 杨文才, 施爱农, 王春莲, 阙更生, 赵炳宇, 邢全党. 3个粳稻抗白叶枯病近等基因系的构建. 作物学报, 1998, 24(6): 799-804. |
ZHANG Q, YANG W C, SHI A N, WANG C L, QUE G S, ZHAO B Y, XING Q D. Breeding of three near-isogenic japonica rice lines with major genes for resistance to bacterial-blight. Acta Agronomica Sinica, 1998, 24(6): 799-804. (in Chinese) | |
[17] | 章琦, 王春连, 赵开军, 杨文才, 乔枫, 周永力, 江祺祥, 刘古春. 携有抗白叶枯病新基因Xa23水稻近等基因系的构建及应用. 中国水稻科学, 2002, 16(3): 206-210. |
ZHANG Q, WANG C L, ZHAO K J, YANG W C, QIAO F, ZHOU Y L, JIANG Q X, LIU G C. Development of near-isogenic line CBB23 with a new resistance gene to bacterial blight in rice and its application. Chinese Journal of Rice Science, 2002, 16(3): 206-210. (in Chinese) | |
[18] | JIANG N, YAN J, LIANG Y, SHI Y, HE Z, WU Y, ZENG Q, LIU X, PENG J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—An updated review. Rice, 2020, 13(1): 3. |
[19] | NEELAM K, MAHAJAN R, GUPTA V, BHATIA D, GILL B K, KOMAL R, LORE J S, MANGAT G S, SINGH K. High-resolution genetic mapping of a novel bacterial glight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theoretical and Applied Genetics, 2020, 133(3): 689-705. |
[20] | 许志刚, 孙启明, 刘凤权, 陈志谊, 胡白石, 郭亚辉, 刘永峰, 刘红霞. 水稻白叶枯病菌小种分化的监测. 中国水稻科学, 2004, 18(5): 469-472. |
XU Z G, SUN Q M, LIU F Q, CHEN Z Y, HU B S, GUO Y H, LIU Y F, LIU H X. Race monitoring of rice bacterial blight (Xanthomonas oryzae pv. oryzae) in China. Chinese Journal of Rice Science, 2004, 18(5): 469-472. (in Chinese) | |
[21] | 杨万风, 刘红霞, 胡白石, 许志刚, 刘凤权. 中国水稻白叶枯病菌毒性变异研究. 植物病理学报, 2006, 36(3): 244-248. |
YANG W F, LIU H X, HU B S, XU Z G, LIU F Q. Virulence variation of Xanthomonas oryzae pv. oryzae on rice near-isogenic lines in China. Acta Phytopathologica Sinica, 2006, 36(3): 244-248. (in Chinese) | |
[22] | 夏立琼, 李明容, 谢仕猛, 翟文学, 夏志辉. 海南水稻白叶枯病菌优势生理小种的分离及致病力分析. 分子植物育种, 2016, 14(5): 1336-1340. |
XIA L Q, LI M R, XIE S M, ZHAI W X, XIA Z H. Isolation and pathogenicity analysis of the predominant race of Xanthomonas oryzae pv. oryzae in Hainan. Molecular Plant Breeding, 2016, 14(5): 1336-1340. (in Chinese) | |
[23] | KOGEETHAVANI R, FATIN N A, SUZIANTI I V, ERWAN S S. Characterization of pathogenic variability of Xanthomonas oryzae pv. oryzae isolates causing bacterial leaf blight disease in Malaysian rice granaries. Australasian Plant Pathology, 2021, 50: 293-298. |
[24] | 余建英, 何旭宏. 数据统计分析与SPSS应用. 北京: 人民邮电出版社, 2003. |
YU J Y, HE X H. Data Statistical Analysis and SPSS Application. Beijing: People’s Posts and Telecommunications Press, 2003. (in Chinese) | |
[25] | 周俊飞, 章山, 孙婧, 张伟, 高利芬. 水稻抗白叶枯病近等基因系的抗性鉴定揭示基因聚合的多向性效应. 华北农学报, 2020, 35(6): 67-73. |
ZHOU J F, ZHANG S, SUN J, ZHANG W, GAO L F. Resistance identification of near-isogenic lines to bacterial blight in rice reveals the multidirectional effect of gene pyramiding. Acta Agriculture Boreali-Sinica, 2020, 35(6): 67-73. (in Chinese) | |
[26] | 成太辉, 陈深, 杨健源, 朱小源, 伍圣远, 洪启金, 曾列先. 水稻抗白叶枯病V型菌xa5基因利用现状及前景. 广东农业科学, 2020, 47(1): 92-97. |
CHENG T H, CHEN S, YANG J Y, ZHU X Y, WU S Y, HONG Q J, ZENG L X. Dtilization situation and prospect of gene xa5against pathotype V of rice bacterial blight. Guangdong Agricultural Sciences, 2020, 47(1): 92-97. (in Chinese) | |
[27] | 倪大虎, 易成新, 杨剑波, 汪秀峰, 张毅, 章琦, 王春连, 赵开军, 王文相, 李莉. 利用分子标记辅助选择聚合Pi9(t)和Xa23基因. 分子植物育种, 2007, 5(4): 491-496. |
NI D H, YI C X, YANG J B, WANG X F, ZHANG Y, ZHANG Q, WANG C L, ZHAO K J, WANG W X, LI L. Pyramiding Pi9(t) and Xa23 genes by molecular marker-assisted selection. Molecular Plant Breeding, 2007, 5(4): 491-496. (in Chinese) | |
[28] | ABDUL FIYAZ R, SHIVANI D, CHAITHANYA K, MOUNIKA K, CHIRANJEEVI M, LAHA G S, VIRAKTAMATH B C, SUBBA RAO L V, SUNDARAM R M. Genetic improvement of rice for bacterial blight resistance: Present status and future prospects. Rice Science, 2022, 29(2): 118-132. |
[29] | 陈小林, 颜群, 高利军, 韦善富, 李道远, 高汉亮. 广西水稻白叶枯病菌致病型的初步鉴定. 南方农业学报, 2015, 46(2): 236-240. |
CHEN X L, YAN Q, GAO L J, WEI S F, LI D Y, GAO H L. Preliminary identification of pathotype of Xanthomonas oryzae pv. oryzae in Guangxi. Journal of Southern Agriculture, 2015, 46(2): 236-240. (in Chinese) | |
[30] | 袁斌, 刘友梅, 黄薇, 张舒, 吕亮, 常向前, 杨小林. 湖北省水稻白叶枯病菌致病型分化检测与分析. 湖北农业科学, 2018, 57(24): 100-103. |
YUAN B, LIU Y M, HUANG W, ZHANG S, LÜ L, CHANG X Q, YANG X L. Differential detection and analysis of pathotypes of Xanthomonas oryzae pv. oryzae in Hubei Province. Hubei Agricultural Sciences, 2018, 57(24): 100-103. (in Chinese) | |
[31] | 阎园园, 陈华, 姜波. 基于群智能算法分类模型的番茄病害识别. 江苏农业科学, 2020, 48(1): 219-224. |
YAN Y Y, CHEN H, JIANG B. Tomato disease recognition based on swarm intelligence classification model. Jiangsu Agricultural Science, 2020, 48(1): 219-224. (in Chinese) | |
[32] | 徐笑锋, 肖英杰, 章学来, 徐亚伟. 基于PCA-相对熵模型的海上中转引航平台选址研究. 安全与环境学报, 2021, 21(6): 2438-2443. |
XU X F, XIAO Y J, ZHANG X L, XU Y W. Research on site selection of maritime transit pilot platform based on PCA-relative entropy model. Journal of Safety and Environment, 2021, 21(6): 2438-2443. (in Chinese) | |
[33] | 吕开云, 鞠厦轶, 龚循强, 鲁铁定. 基于PCA和IGG权函数的人脸图像鲁棒线性回归分类方法. 电子测量技术, 2021, 44(21): 152-157. |
LÜ K Y, JU X Y, GONG X Q, LU T D. Face recognition using robust linear regression classification based on PCA and IGG weight function. Electronic Measurement Technology, 2021, 44(21): 152-157. (in Chinese) | |
[34] | 郭金玉, 刘玉超, 李元. 加权局部近邻标准化PCA的工业过程故障检测. 沈阳化工大学学报, 2021, 35(3): 265-274. |
GUO J Y, LIU Y C, LI Y. Fault detection of industrial process based on weighed local neighborhood standardization PCA. Journal of Shenyang University of Chemical Technology, 2021, 35(3): 265-274. (in Chinese) | |
[35] | REICH D, PRICE A L, PATTERSON N. Principal component analysis of genetic data. Nature Genetics, 2008, 40(5): 491-492. |
[36] | HUANG X, WEI X, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C, ZHU C, LU T, ZHANG Z, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967. |
[37] | ZHAO K, TUNG C W, EIZENGA G C, WRIGHT M H, ALI M L, PRICE A H, NORTON G J, ISLAM M R, REYNOLDS A, MEZEY J, MCCLUNG A M, BUSTAMANTE C D, MCCOUCH S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011, 2: 467. |
[38] | JONNALAGADDA S, SRINIVASAN R. Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data. BMC Bioinformatics, 2008, 9: 267. |
[39] | 周丽娜, 于海业, 张蕾, 任顺, 隋媛媛, 于连军. 基于叶绿素荧光光谱分析的稻瘟病害预测模型. 光谱学与光谱分析, 2014, 34(4): 1003-1006. |
ZHOU L N, YU H Y, ZHANG L, REN S, SUI Y Y, YU L J. Rice blast prediction model based on analysis of chlorophyll fluorescence spectrum. Spectroscopy and Spectral Analysis, 2014, 34(4): 1003-1006. (in Chinese) | |
[40] | WANG C Y, CHEN S, FENG A Q, SU J, WANG W J, FENG J Q, CHEN B, ZHANG M Y, YANG J Y, ZENG L X, ZHU X Y. Xa7, a small orphan gene harboring promoter trap for AvrXa7, leads to the durable resistance to Xanthomonas oryzae pv. oryzae. Rice, 2021, 14(1): 48. |
[41] | CHEN X F, LIU P C, MEI L, HE X L, CHEN L, LIU H, SHEN S R, JI Z D, ZHENG X X, ZHANG Y C, GAO Z Y, ZENG D L, QIAN Q, MA B J. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Communications, 2021, 2(3): 100143. |
[42] | LUO D, HUGUET-TAPIA J C, RABORN R T, WHITE F F, YANG B. The Xa7 resistance gene guards the susceptibility gene SWEET14 of rice against exploitation by bacterial blight pathogen. Plant Communications, 2021, 2(3): 100164. |
[43] | JI C H, JI Z Y, LIU B, CHENG H, LIU H, LIU S Z, YANG B, CHEN G Y. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Communications, 2020, 1(4): 100087. |
[44] | ZHANG B M, ZHANG H T, LI F, OUYANG Y D, YUAN M, LI X H, XIAO J H, WANG S P. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae. Plant Communications, 2020, 1(4): 100088. |
[45] | PRADHAN S K, BARIK S R, SAHOO A, MOHAPATRA S, NAYAK D K, MAHENDER A, MEHER J, ANANDAN A, PANDIT E. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLoS ONE, 2016, 11(8): e0160027. |
[46] | BALIYAN N, MALIK R, RANI R, MEHTA K, VASHISTH U, DHILLON S, BOORA K S. Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. Comptes Rendus Biologies, 2018, 341(1): 1-8. |
[47] | HSU Y C, CHIU C H, YAP R, TSENG Y C, WU Y P. Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. International Journal of Molecular Sciences, 2020, 21(4): 1281. |
[48] | WANG Y, PRUITT R N, NÜRNBERGER T, WANG Y C. Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 2022, 20(8): 449-464. |
[1] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[2] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[3] | 王梦蕊, 刘淑梅, 侯丽霞, 王施慧, 吕宏君, 苏晓梅. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 2022, 55(4): 707-718. |
[4] | 向妙莲, 吴帆, 李树成, 王印宝, 肖刘华, 彭文文, 陈金印, 陈明. 褪黑素处理对梨果实采后黑斑病及贮藏品质的影响[J]. 中国农业科学, 2022, 55(4): 785-795. |
[5] | 胡朝月, 王凤涛, 郎晓威, 冯晶, 李俊凯, 蔺瑞明, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析[J]. 中国农业科学, 2022, 55(3): 491-502. |
[6] | 杜金霞,李奕莎,李美霖,陈文浛,张木清. 甘蔗不同基因型对白条病抗性的评价[J]. 中国农业科学, 2022, 55(21): 4118-4130. |
[7] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[8] | 路粉,孟润杰,吴杰,赵建江,李洋,毕秋艳,韩秀英,李敬华,王文桥. 马铃薯晚疫病菌对霜脲氰抗性动态监测及药效验证[J]. 中国农业科学, 2022, 55(18): 3556-3564. |
[9] | 沈志军, 田雨, 蔡志翔, 徐子媛, 严娟, 孙朦, 马瑞娟, 俞明亮. 基于国家果树种质南京桃资源圃的桃褐腐病抗性评价[J]. 中国农业科学, 2022, 55(15): 3018-3028. |
[10] | 陈二虎,孟宏杰,陈艳,唐培安. 表皮蛋白基因TcCP14.6和TcLCPA3A参与介导赤拟谷盗对磷化氢的抗性形成[J]. 中国农业科学, 2022, 55(11): 2150-2160. |
[11] | 赵珂,郑林,杜美霞,龙俊宏,何永睿,陈善春,邹修平. 柑橘SAR及其信号转导基因CsSABP2在黄龙病菌侵染中的响应特征[J]. 中国农业科学, 2021, 54(8): 1638-1652. |
[12] | 高兴祥,李健,张帅,张悦丽,房锋,李美,柏连阳,张双应. 节节麦在山东省冬小麦田的扩散蔓延及对甲基二磺隆抗性测定[J]. 中国农业科学, 2021, 54(5): 969-979. |
[13] | 闻竞,沈彦岐,王梓钰,李世界,莫蓝月,雷宇豪,张艳,韩四平. 基于图像分析的玉米抗拟轮枝镰孢穗腐病的QTL定位[J]. 中国农业科学, 2021, 54(13): 2724-2736. |
[14] | 周天宇,李姜玲,杨澜,阮仁武,杨宇衡,李中安. 基于亲本对条锈病敏感性预测小麦杂交种的抗性[J]. 中国农业科学, 2020, 53(9): 1806-1819. |
[15] | 贾海燕,宋丽云,徐翔,解屹,张超群,刘天波,赵存孝,申莉莉,王杰,李莹,王凤龙,杨金广. 不同温度下TMV侵染枯斑三生烟的LncRNA差异表达[J]. 中国农业科学, 2020, 53(7): 1381-1396. |
|