[1] |
ADKAR-PURUSHOTHAMA C R, QUAGLINO F, CASATI P, RAMANAYAKA J G, BIANCO P A. Genetic diversity among ‘Candidatus Liberibacter asiaticus’ isolates based on single nucleotide polymorphisms in 16S rRNA and ribosomal protein genes. Annals of Microbiology, 2009,59(4):681-688.
|
[2] |
GOTTAWALD T R. Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology, 2010,48:119-139.
doi: 10.1146/annurev-phyto-073009-114418
pmid: 20415578
|
[3] |
林积秀. 柑橘黄龙病的防治进展. 东南园艺, 2018,6(5):45-52.
|
|
LIN J X. Progress on control of citrus Huanglongbing. Southeast Horticulture, 2018,6(5):45-52. (in Chinese)
|
[4] |
白晓晶, 许兰珍, 贾瑞瑞, 周鹏飞, 陈敏, 何永睿, 彭爱红, 雷天刚, 李强, 姚利晓, 陈善春, 邹修平. 柑橘黄龙病相关水杨酸羧基甲基转移酶基因CsSAMT-1的克隆与表达分析. 园艺学报, 2017,44(12):2265-2274.
|
|
BAI X J, XU L Z, JIA R R, ZHOU P F, CHEN M, HE Y R, PENG A H, LEI T G, LI Q, YAO L X, CHEN S C, ZOU X P. Cloning and expression analysis of HLB-associated salicylic acid carboxyl methyltransferase gene CsSAMT-1 in citrus. Acta Horticulturae Sinica, 2017,44(12):2265-2274. (in Chinese)
|
[5] |
MALAMY J, CARR J P, KLESSIG D F, RASKIN I. Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 1990,250(4983):1002-1004.
|
[6] |
DA GRAÇA J V, DOUHAN G W, HALBERT S E, KEREMANE M L, LEE R F, VIDALAKIS G, ZHAO H W. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. Journal of Integrative Plant Biology, 2016,58(4):373-387.
|
[7] |
WANG N, PIERSON E A, SETUBAL J C, XU J, LEVY J G, ZHANG Y Z, LI J Y, RANGEL L T, MARTINS J. The Candidatus Liberibacter-host interface: Insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology, 2017,55:451-482.
pmid: 28637377
|
[8] |
ALBRECHT U, BOWMAN K D. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Science, 2012,185/186:118-130.
|
[9] |
WANG Y, ZHOU L, YU X, STOVER E, LUO F, DUAN Y. Transcriptome profiling of Huanglongbing (HLB) tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science, 2016,7:933.
|
[10] |
MARTINELLI F, REAGAN R L, URATSU S L, PHU M L, ALBRECHT U, ZHAO W, DAVID C E, BOWMAN K D, DANDEKAR A M. Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS ONE, 2013,8(9):e74256.
pmid: 24086326
|
[11] |
CLARK K, FRANCO J Y, SCHWIZER S, PANG Z Q, HAWARA E, LIEBAND T W H, PAGLIACCIA D, ZENG L P, GURUNG F B, WANG P C, et al. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications, 2018,9:1718.
|
[12] |
LI J Y, PANG Z Q, TRIVEDI P, ZHOU X F, YING X B, JIA H G, WANG N A. ‘Candidatus Liberibacter asiaticus’ encodes a functional salicylic acid (SA) hydroxylase that degrades SA to suppress plant defenses. Molecular Plant-Microbe Interactions, 2017,30(8):620-630.
doi: 10.1094/MPMI-12-16-0257-R
pmid: 28488467
|
[13] |
DUTT M, BARTHE G, IREY M, GROSSER J. Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLoS ONE, 2015,10(9):e0137134.
|
[14] |
ZUBIETA C, ROSS J R, KOSCHESKI P, YANG Y, PICHERSKY E, NOEL J P. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. The Plant Cell, 2003,15(8):1704-1716.
pmid: 12897246
|
[15] |
KOO Y J, KIM M A, KIM E H, SONG J T, JUNG C, MOON J K, KIM J H, SEO H S, SONG S I, KIM J K, LEE J S, CHEONG J J, CHOI Y D. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 2007,64(1/2):1-15.
|
[16] |
VLOT A C, LIU P P, CAMERON R K, PARK S W, YANG Y, KUMAR D, ZHOU F, PADUKKAVIDANA T, GUSTAFSSON C, PICHERSKY E, KLESSIG D F. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. The Plant Journal, 2008,56(3):445-456.
doi: 10.1111/j.1365-313X.2008.03618.x
pmid: 18643994
|
[17] |
MANOSALVA P M, PARK S W, FOROUHAR F, TONG L, FRY W E, KLESSIG D F. Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Molecular Plant-Microbe Interactions, 2010,23(9):1151-1163.
|
[18] |
ZOU X P, BAI X J, WEN Q L, XIE Z, WU L, PENG A H, HE Y R, XU L Z, CHEN S C. Comparative analysis of tolerant and susceptible citrus reveals the role of methyl salicylate signaling in the response to Huanglongbing. Journal of Plant Growth Regulation, 2019,38(4):1516-1528.
|
[19] |
SESKAR M, SHULAEV V, RASKIN I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiology, 1998,116(1):387-392.
|
[20] |
FOROUHAR F, YANG Y, KUMAR D, CHEN Y, FRIDMAN E, PARK S W, CHIANG Y, ACTON T B, MONTELIONE G T, PICHERSKY E, KLESSIG D F, TONG L. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(5):1773-1778.
|
[21] |
PARK S W, KAIMOYO E, KUMAR D, MOSHER S, KLESSIG D F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 2007,318(5847):113-116.
pmid: 17916738
|
[22] |
董慧霞. SABP2和SAMT基因在杨树与溃疡病菌(Botryosphaeria dothidea)互作中的功能分析[D]. 北京: 中国林业科学研究院, 2017.
|
|
DONG H X. Gene function analysis of SABP2 and SAMT in poplar interactions with Botryosphaeria dothidea[D]. Beijing: Chinese Academy of Forestry, 2017. (in Chinese)
|
[23] |
KUMAR D, KLESSIG D F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(26):16101-16106.
|
[24] |
程世亚, 袁澍, 席德慧, 林宏辉. 植物系统获得性抗性的分子机理. 生命的化学, 2008,28(3):256-259.
|
|
CHENG S Y, YUAN S, XI D H, LIN H H. Molecular mechanism of systemic acquired resistance in plant. Chemistry of Life, 2008,28(3):256-259. (in Chinese)
|
[25] |
佟志鹏, 安梦楠, 丁铖松, 孙慧颖, 梁月. 植物病程相关蛋白PR-NP24研究进展. 分子植物育种, 2019,17(11):3542-3548.
|
|
TONG Z P, AN M N, DING C S, SUN H Y, LIANG Y. Progress on plant pathogenesis-related protein PR-NP24. Molecular Plant Breeding, 2019,17(11):3542-3548. (in Chinese)
|
[26] |
SHINE M B, XIAO X Q, KACHROO P, KACHROO A. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science, 2019,279:81-86.
|
[27] |
白晓晶. CsSAMT-1基因在水杨酸信号响应柑橘黄龙病侵染中的功能研究[D]. 重庆: 西南大学, 2018.
|
|
BAI X J. Function of CsSAMT-1 in citrus salicylic acid signal response to Huanglongbing infection[D]. Chongqing: Southwest University, 2018. (in Chinese)
|
[28] |
ZOU X, JIANG X, XU L, LEI T, PENG A, HE Y, YAO L, CHEN S. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Molecular Biology, 2017,93:341-353.
pmid: 27866312
|
[29] |
XU Q, CHEN L L, RUAN X, CHEN D, ZHU A, CHEN C, BERTRAND D, JIAO W B, HAO B H, LYON M P, et al. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013,45(1):59-66.
doi: 10.1038/ng.2472
pmid: 23179022
|
[30] |
SHOKROLLAH H, ABDULLAH T L, SIJAM K, ABDULLAH S N A, ABDULLAH N A P. Differential reaction of citrus species in Malysia to Huanglongbing (HLB) disease using grafting method. American Journal of Agricultural and Biological Sciences, 2009,4(1):32-38.
|
[31] |
贾亚军, 王晓婷, 许娜, 郭娜, 邢邯. 大豆水杨酸结合蛋白基因GmSABP2的克隆及功能分析. 中国农业科学, 2015,48(18):3580-3588.
|
|
JIA Y J, WANG X T, XU N, GUO N, XING H. Cloning and function analysis of salicylic acid binding protein gene GmSABP2 from soybean. Scientia Agricultura Sinica, 2015,48(18):3580-3588. (in Chinese)
|
[32] |
SHULAEV V, SILVERMAN P, RASKIN I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 1997,385(6618):718-721.
|