中国农业科学 ›› 2022, Vol. 55 ›› Issue (11): 2150-2160.doi: 10.3864/j.issn.0578-1752.2022.11.006
收稿日期:
2021-11-23
接受日期:
2021-12-28
出版日期:
2022-06-01
发布日期:
2022-06-16
通讯作者:
唐培安
作者简介:
陈二虎,E-mail: 基金资助:
CHEN ErHu(),MENG HongJie,CHEN Yan,TANG PeiAn()
Received:
2021-11-23
Accepted:
2021-12-28
Online:
2022-06-01
Published:
2022-06-16
Contact:
PeiAn TANG
摘要:
【目的】 表皮蛋白是昆虫表皮重要的结构物质,大量研究已经证实表皮蛋白基因参与介导昆虫抗药性形成。以赤拟谷盗(Tribolium castaneum)为研究对象,解析表皮蛋白基因TcCP14.6(cuticle protein CP14.6)和TcLCPA3A(larval cuticle protein A3A)在昆虫磷化氢抗性形成过程中的作用。【方法】 采用联合国粮农组织(FAO)推荐的磷化氢熏蒸方法对采自5个省份赤拟谷盗的磷化氢抗性水平进行测定。基于赤拟谷盗基因组数据获得TcCP14.6和TcLCPA3A的cDNA序列,利用在线生物信息学分析软件预测其编码的氨基酸序列、信号肽和保守结构域。分别提取赤拟谷盗不同组织(头、胸、腹的表皮、翅、足、肠道、马氏管和脂肪体)、不同磷化氢抗性水平以及磷化氢胁迫后试虫的总RNA。以TcRPS和TcRPL为内参基因,运用RT-qPCR技术分析TcCP14.6和TcLCPA3A在赤拟谷盗不同组织、不同磷化氢抗性水平和药剂胁迫下的表达模式。最后,通过RNA干扰技术结合生物测定方法分析TcCP14.6和TcLCPA3A与赤拟谷盗磷化氢抗性的关系。【结果】 生物测定结果表明,江苏(JS,RR=1.7)和云南(YN,RR=3.0)种群对磷化氢保持敏感,湖南种群(HN,RR=20.2)表现为中等抗性,四川(SC,RR=395.4)和广东(GD, RR=862.7)种群表现为极高抗。序列分析结果表明TcCP14.6和TcLCPA3A蛋白均包含信号肽和保守的几丁质结合域。RT-qPCR结果显示,TcCP14.6和TcLCPA3A均在赤拟谷盗表皮组织中高表达,而在内部器官(脂肪体、肠道、马氏管)中的表达量相对较低。此外,TcCP14.6表达量随磷化氢抗性水平的增加呈上调趋势,而TcLCPA3A表达量则呈下降趋势;赤拟谷盗经磷化氢熏蒸处理6 h,TcCP14.6和TcLCPA3A的表达量分别呈现上调和下调趋势。注射dsRNA分别干扰抗性(GD)和敏感(YN)种群两个基因的表达后再用LC30的磷化氢浓度处理试虫。与对照相比,TcCP14.6基因沉默后赤拟谷盗的死亡率显著升高,而TcLCPA3A基因沉默后试虫死亡率显著下降。【结论】 表皮蛋白基因TcCP14.6和TcLCPA3A参与介导赤拟谷盗对磷化氢的抗性。
陈二虎,孟宏杰,陈艳,唐培安. 表皮蛋白基因TcCP14.6和TcLCPA3A参与介导赤拟谷盗对磷化氢的抗性形成[J]. 中国农业科学, 2022, 55(11): 2150-2160.
CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum[J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
表1
本研究所用引物序列"
引物类型Primer type | 引物名称Primer name | 引物序列Primer sequence (5′ to 3′) |
---|---|---|
qPCR引物 Primers for qPCR | TcCP14.6-F | CGGCCATCCTCAGACTCAAC |
TcCP14.6-R | GAATTCCTGGTCGGTCCCTG | |
TcLCPA3A-F | AAGGCAGCTACTCCCTCACT | |
TcLCPA3A-R | GGACAACAGCGTTGAAACCG | |
TcRPS18-F | CGAAGAGGTCGAGAAAATCG | |
TcRPS18-R | CGTGGTCTTGGTGTGTTGAC | |
TcRPL13α-F | ACCATATGACCGCAGGAAAC | |
TcRPL13α-R | GGTGAATGGAGCCACTTGTT | |
dsRNA引物 Primers for dsRNA | dsTcCP14.6-F | ggatcctaatacgactcactataggCACCTCTCATCTCCGATGCT |
dsTcCP14.6-R | ggatcctaatacgactcactataggTTTCACTTCGCCGATCTCCT | |
dsTcLCPA3A-F | ggatcctaatacgactcactataggACGAGCAACAATGGCATTCA | |
dsTcLCPA3A-R | ggatcctaatacgactcactataggTATTCAACAGTACGGCGGGT | |
dsGFP-F | ggatcctaatacgactcactataggATGGTGAGCAAGGGCGAGA | |
dsGFP-R | ggatcctaatacgactcactataggTTACTTGTACAGCTCGTCCA |
表2
不同地理种群赤拟谷盗的磷化氢敏感性"
种群 Population | 采集地 Collection site | 回归方程 <BOLD>R</BOLD>egression equation (y=) | 致死中浓度LC50 (μg·L-1) (95% CIa) | 抗性倍数 RR |
---|---|---|---|---|
JS | 江苏Jiangsu | -7.108+6.009x | 15.2 (14.1-16.2) | 1.7 |
YN | 云南Yunnan | -10.565+7.465x | 27.2 (26.7-27.5) | 3.0 |
HN | 湖南Hunan | -6.378+2.822x | 182.1 (151.6-240.7) | 20.2 |
SC | 四川Sichuan | -18.084+5.092x | 3558.4 (3402.7-3726.3) | 395.4 |
GD | 广东Guangdong | -47.249+12.146x | 7763.9 (7401.6-8143.6) | 862.7 |
[1] |
BAJRACHARYA N S, OPIT G P, TALLEY J, GAUTAM S G, PAYTON M E. Assessment of fitness effects associated with phosphine resistance in Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). African Entomology, 2016, 24(1): 39-49.
doi: 10.4001/003.024.0039 |
[2] |
JAGADEESAN R, COLLINS P J, DAGLISH G J, EBERT P R, SCHLIPALIUS D I. Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, gene interactions and fitness costs. PLoS ONE, 2012, 7(2): e31582.
doi: 10.1371/journal.pone.0031582 |
[3] |
NAYAK M K, HOLLOWAY J C, EMERY R N, PAVIC H, BARTLET J, COLLINS P J. Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): Its characterisation, a rapid assay for diagnosis and its distribution in Australia. Pest Management Science, 2013, 69(1): 48-53.
doi: 10.1002/ps.3360 |
[4] |
AULICKY R, STEJSKAL V, FRYDOVA B. Field validation of phosphine efficacy on the first recorded resistant strains of Sitophilus granarius and Tribolium castaneum from the Czech Republic. Journal of Stored Products Research, 2019, 81: 107-113.
doi: 10.1016/j.jspr.2019.02.003 |
[5] |
AGRAFIOTI P, ATHANASSIOU C G, NAYAK M K. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. Journal of Stored Products Research, 2019, 82: 40-47.
doi: 10.1016/j.jspr.2019.02.004 |
[6] |
PIMENTEL M A G, FARONI L R, TÓTOLA M R, GUEDES R N C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Management Science, 2007, 63(9): 876-881.
doi: 10.1002/ps.1416 |
[7] |
ZURYN S, KUANG J, EBERT P. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans. Toxicological Sciences, 2008, 102(1): 179-186.
doi: 10.1093/toxsci/kfm278 |
[8] |
OPIT G P, PHILLIPS T W, AIKINS M J, HASAN M M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. Journal of Economic Entomology, 2012, 105(4): 1107-1114.
doi: 10.1603/EC12064 |
[9] |
SCHLIPALIUS D I, TUCK A G, PAVIC H, DAGLISH G J, NAYAK M K, EBERT P R. A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions. Pest Management Science, 2019, 75(4): 1091-1098.
doi: 10.1002/ps.5221 |
[10] |
SCHLIPALIUS D I, VALMAS N, TUCK A G, JAGADEESAN R, MA L, KAUR R, GOLDINGER A, ANDERSON C, KUANG J, ZURYN S, et al. A core metabolic enzyme mediates resistance to phosphine gas. Science, 2012, 338(6108): 807-810.
doi: 10.1126/science.1224951 |
[11] |
CHAUDHRY M Q, PRICE N R. Insect mortality at doses of phosphine which produce equal uptake in susceptible and resistant strains of Rhyzopertha dominica (F.)(Coleoptera: Bostrychidae). Journal of Stored Products Research, 1990, 26(2): 101-107.
doi: 10.1016/0022-474X(90)90008-G |
[12] |
YANG J O, PARK J S, LEE H S, KWON M, KIM G H, KIM J. Identification of a phosphine resistance mechanism in Rhyzopertha dominica based on transcriptome analysis. Journal of Asia-Pacific Entomology, 2018, 21: 1450-1456.
doi: 10.1016/j.aspen.2018.11.012 |
[13] |
HUANG Y, LI F F, LIU M W, WANG Y Z, SHEN F, TANG P A. Susceptibility of Tribolium castaneum to phosphine in China and functions of cytochrome P450s in phosphine resistance. Journal of Pest Science, 2019, 92: 1239-1248.
doi: 10.1007/s10340-019-01088-7 |
[14] | DOUCET D, RETNAKARAN A. Targeting cuticular components for pest management//COHEN E, MOUSSIAN B. Extracellular Composite Matrices in Arthropods, 2016: 369-407. |
[15] |
GIROTTI J R, MIJAILOVSKY S J, JUÁREZ M P. Epicuticular hydrocarbons of the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). Physiological Entomology, 2012, 37: 266-277.
doi: 10.1111/j.1365-3032.2012.00843.x |
[16] |
BALABANIDOU V, GRIGORAKI L, VONTAS J. Insect cuticle: A critical determinant of insecticide resistance. Current Opinion in Insect Science, 2018, 27: 68-74.
doi: 10.1016/j.cois.2018.03.001 |
[17] |
SOH L S, SINGHAM G V. Cuticle thickening associated with fenitrothion and imidacloprid resistance and influence of voltage-gated sodium channel mutations on pyrethroid resistance in the tropical bed bug, Cimex hemipterus. Pest Management Science, 2021, 77(11): 5202-5212.
doi: 10.1002/ps.6561 |
[18] |
MOUSSIAN B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 2010, 40: 363-375.
doi: 10.1016/j.ibmb.2010.03.003 |
[19] |
FUTAHASHI R, OKAMOTO S, KAWASAKI H, ZHONG Y S, IWANAGA M, MITA K, FUJIWARA H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38: 1138-1146.
doi: 10.1016/j.ibmb.2008.05.007 |
[20] |
YANG C H, YANG P C, ZHANG S F, SHI Z Y, KANG L, ZHANG A B. Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Insect Biochemistry and Molecular Biology, 2017, 83: 94-106.
doi: 10.1016/j.ibmb.2017.03.003 |
[21] | 刘晓健, 刘卫敏, 赵小明, 张建珍, 马恩波. 昆虫表皮发育研究进展及展望. 应用昆虫学报, 2019, 56(4): 625-638. |
LIU X J, LIU W M, ZHAO X M, ZHANG J Z, MA E B. Progress in the study of insect cuticle development and prospects for future research. Chinese Journal of Applied Entomology, 2019, 56(4): 625-638. (in Chinese) | |
[22] | 梁欣, 陈斌, 乔梁. 昆虫表皮蛋白基因研究进展. 昆虫学报, 2014, 57(9): 1084-1093. |
LIANG X, CHEN B, QIAO L. Research progress in insect cuticular protein genes. Acta Entomologica Sinica, 2014, 57(9): 1084-1093. (in Chinese) | |
[23] |
KAROUZOU M V, SPYROPOULOS Y, ICONOMIDOU V A, CORNMAN R S, HAMODRAKAS S J, WILLIS J H. Drosophila cuticular proteins with the R&R Consensus: Annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochemistry and Molecular Biology, 2007, 37: 754-760.
doi: 10.1016/j.ibmb.2007.03.007 |
[24] | 丛林, 刘浩强, 李鸿筠, 巴音克西克, 冉春. 褐色橘蚜RR-2型表皮蛋白基因鉴定及功能分析. 植物保护学报, 2020, 47(5): 1078-1087. |
CONG L, LIU H Q, LI H J, BAYINKEXIKE, RAN C. Identification and function analysis of RR-2 CPR genes in brown citrus aphid Toxoptera citricida (Kirkaldy). Journal of Plant Protection, 2020, 47(5): 1078-1087. (in Chinese) | |
[25] |
SHAHIN R, IWANAGA M, KAWASAKI H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. Insect Molecular Biology, 2016, 25(2): 138-152.
doi: 10.1111/imb.12207 |
[26] |
QIAO L, XIONG G, WANG R X, HE S Z, CHEN J, TONG X L, HU H, LI C L, GAI T T, XIN Y Q, LIU X F, CHEN B, XIANG Z H, LU C, DAI F Y. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics, 2014, 196: 1103-1115.
doi: 10.1534/genetics.113.158766 |
[27] |
ASANO T, TAOKA M, SHINKAWA T, YAMAUCHI Y, ISOBE T, SATO D. Identification of a cuticle protein with unique repeated motifs in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2013, 43: 344-351.
doi: 10.1016/j.ibmb.2013.01.001 |
[28] |
OPPERT B, GUEDES R N C, AIKINS M J, PERKIN L, CHEN Z, PHILLIPS T W, ZHU K Y, OPIT G P, HOON K, SUN Y, et al. Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum. BMC Genomics, 2015, 16: 968.
doi: 10.1186/s12864-015-2121-0 |
[29] |
WANG K X, LIU M W, WANG Y Z, SONG W, TANG P A. Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum. Pesticide Biochemistry and Physiology, 2020, 168: 104622.
doi: 10.1016/j.pestbp.2020.104622 |
[30] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ctmethod. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[31] |
PHILLIPS T W, THRONE J E. Biorational approaches to managing stored-product insects. Annual Review of Entomology, 2010, 55: 375-397.
doi: 10.1146/annurev.ento.54.110807.090451 |
[32] |
NAYAK M K, DAGLISH G J, PHILLIPS T W, EBERT P R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annual Review of Entomology, 2020, 65: 333-350.
doi: 10.1146/annurev-ento-011019-025047 |
[33] |
KAUR R, SUBBARAYALU M, JAGADEESAN R, DAGLISH G J, NAYAK M K, NAIK H R, RAMASAMY S, SUBRAMANIAN C, EBERT P R, SCHLIPALIUS D I. Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Heredity, 2015, 115: 188-194.
doi: 10.1038/hdy.2015.24 |
[34] |
HUBHACHEN Z, JIANG H, SCHLIPALIUS D, PARK Y, GUEDES R N C, OPPERT B, OPIT G, PHILLIPS T W. A CAPS marker for determination of strong phosphine resistance in Tribolium castaneum from Brazil. Journal of Pest Science, 2020, 93: 127-134.
doi: 10.1007/s10340-019-01134-4 |
[35] | 叶长青, 包涵, 刘田, 杨青. 双叉犀金龟表皮蛋白TdCPR12611与TdCPR7854的表达纯化及特性分析. 昆虫学报, 2021, 64(1): 19-29. |
YE C Q, BAO H, LIU T, YANG Q. Expression, purification and characterization of the cuticular proteins TdCPR12611 and TdCPR7854 from Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Acta Entomologica Sinica, 2021, 64(1): 19-29. (in Chinese) | |
[36] |
TANG L, LIANG J, ZHAN Z, XIANG Z, HE N. Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2010, 40: 228-234.
doi: 10.1016/j.ibmb.2010.01.010 |
[37] |
CHEN E H, HOU Q L, DOU W, WEI D D, YUE Y, YANG R L, YANG P J, YU S F, DE SCHUTTER K, SMAGGHE G, WANG J J. Genome-wide annotation of cuticular proteins in the oriental fruit fly (Bactrocera dorsalis), changes during pupariation and expression analysis of CPAP3 protein genes in response to environmental stresses. Insect Biochemistry and Molecular Biology, 2018, 97: 53-70.
doi: 10.1016/j.ibmb.2018.04.009 |
[38] | 孙汝江. 中华蜜蜂表皮蛋白基因的克隆与功能分析[D]. 泰安: 山东农业大学, 2014. |
SUN R J. Cloning and functional analysis of cuticular protein genes from Apis cerana cerana[D]. Taian: Shandong Agricultural University, 2014. (in Chinese) | |
[39] |
CHEN E H, DUAN J Y, SONG W, WANG D X, TANG P A. RNA-seq analysis reveals mitochondrial and cuticular protein genes are associated with phosphine resistance in the rusty grain beetle (Coleoptera: Laemophloeidae). Journal of Economic Entomology, 2021, 114(1): 440-453.
doi: 10.1093/jee/toaa273 |
[40] |
KOGANEMARU R, MILLER D M, ADELMAN Z N. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pesticide Biochemistry and Physiology, 2013, 106: 190-197.
doi: 10.1016/j.pestbp.2013.01.001 |
[41] |
ZHOU D, DUAN B, SUN Y, MA L, ZHU C, SHEN B. Preliminary characterization of putative structural cuticular proteins in the malaria vector Anopheles sinensis. Pest Management Science, 2017, 73(12): 2519-2528.
doi: 10.1002/ps.4649 |
[42] |
SUN X, GUO J, YE W, GUO Q, HUANG Y, MA L, ZHOU D, SHEN B, SUN Y, ZHU C. Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens. Parasitology Research, 2017, 116(8): 2175-2179.
doi: 10.1007/s00436-017-5521-z |
[43] |
HUANG Y, GUO Q, SUN X H, ZHANG C, XU N, XU Y, ZHOU D, SUN Y, MA L, ZHU C L, SHEN B. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix. Parasites and Vectors, 2018, 11(1): 6.
doi: 10.1186/s13071-017-2567-9 |
[44] | 张万娜, 刘香亚, 赖乾, 肖海军. 棉铃虫表皮蛋白基因CP22和CP14的表达特征及其对甲氧虫酰肼的响应. 植物保护学报, 2021, 48(5): 1043-1053. |
ZHANG W N, LIU X Y, LAI Q, XIAO H J. Expression analysis of cuticular protein genes CP22 and CP14 in cotton bollworm Helicoverpa armigera and their response to the sublethal dose of methoxyfenozide. Journal of Plant Protection, 2021, 48(5): 1043-1053. (in Chinese) | |
[45] |
PRICE N R. Active exclusion of phosphine as a mechanism of resistance in Rhyzopertha dominica (F.)(Coleoptera: Bostrychidae). Journal of Stored Products Research, 1984, 20(3): 163-168.
doi: 10.1016/0022-474X(84)90025-0 |
[46] |
DANG K, DOGGETT S L, SINGHAM G V, LEE C Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites and Vectors, 2017, 10: 318.
doi: 10.1186/s13071-017-2232-3 |
[1] | 张睿,张学尧,赵小明,马恩波,张建珍. 飞蝗表皮蛋白LmKnk3-5′的抗体制备及组织定位[J]. 中国农业科学, 2022, 55(2): 329-338. |
[2] | 关若冰,李海超,苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960. |
[3] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[4] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[5] | 徐翔,解屹,宋丽云,申莉莉,李莹,王勇,刘明宏,刘东阳,王小彦,赵存孝,王凤龙,杨金广. 高效靶向降解烟草花叶病毒核酸的dsRNA筛选与大量制备[J]. 中国农业科学, 2021, 54(6): 1143-1153. |
[6] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[7] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[8] | 於卫东,潘碧莹,邱玲玉,黄镇,周泰,叶林,唐斌,王世贵. 两个褐飞虱海藻糖转运蛋白基因的结构及调控海藻糖代谢功能[J]. 中国农业科学, 2020, 53(23): 4802-4812. |
[9] | 张道伟,康奎,余亚娅,匡富萍,潘碧莹,陈静,唐斌. 白背飞虱酚氧化酶原PPO基因特性及其免疫应答[J]. 中国农业科学, 2020, 53(15): 3108-3119. |
[10] | 刘晓健,郭俊,张学尧,马恩波,张建珍. 飞蝗核受体基因LmE75的分子特性和功能分析[J]. 中国农业科学, 2020, 53(11): 2219-2231. |
[11] | 姚利晓,范海芳,张庆雯,何永睿,许兰珍,雷天刚,彭爱红,李强,邹修平,陈善春. 柑橘溃疡病抗性相关转录因子CitMYB20的功能[J]. 中国农业科学, 2020, 53(10): 1997-2008. |
[12] | 马雯,刘娇,张学尧,申国华,秦雪梅,张建琴. 飞蝗LmGSTS2的酶学特性及其对马拉硫磷、 p,p’-DDT的代谢分析[J]. 中国农业科学, 2019, 52(8): 1389-1399. |
[13] | 丁艳娟,刘永康,罗雨嘉,邓颖梅,徐红星,唐斌,徐彩娣. 褐飞虱GSK-3调控糖原与海藻糖代谢的潜在功能[J]. 中国农业科学, 2019, 52(7): 1237-1246. |
[14] | 贾盼,张晶,杨洋,刘卫敏,张建珍,赵小明. 飞蝗内表皮结构糖蛋白基因LmAbd-2的表达与功能分析[J]. 中国农业科学, 2019, 52(4): 651-660. |
[15] | 陈悦,王田幸子,杨烁,张彤,马金姣,燕高伟,刘玉晴,周艳,史佳楠,兰金苹,魏健,窦世娟,刘丽娟,杨明,李莉云,刘国振. 水稻转录因子OsWRKY68蛋白质的表达特征及其功能特性[J]. 中国农业科学, 2019, 52(12): 2021-2032. |
|