中国农业科学 ›› 2021, Vol. 54 ›› Issue (6): 1081-1091.doi: 10.3864/j.issn.0578-1752.2021.06.001
邱东峰1(),葛平娟1,刘刚1,杨金松1,陈建国2(
),张再君1(
)
收稿日期:
2020-08-13
接受日期:
2020-11-05
出版日期:
2021-03-16
发布日期:
2021-03-25
通讯作者:
陈建国,张再君
作者简介:
邱东峰,Tel:18672779158;E-mail:基金资助:
DongFeng QIU1(),PingJuan GE1,Gang LIU1,JinSong YANG1,JianGuo CHEN2(
),ZaiJun ZHANG1(
)
Received:
2020-08-13
Accepted:
2020-11-05
Online:
2021-03-16
Published:
2021-03-25
Contact:
JianGuo CHEN,ZaiJun ZHANG
摘要:
【目的】为避免未知基因和遗传背景等不可控因素对育种实践的影响,将高通量SNP分型技术与传统育种相结合,培育新品种,以提高育种效率,实现育种方法的改进,为优质食味稻米新种质的鉴定和创制方法提供参考。【方法】以鉴真2号和鄂中5号为亲本,通过杂交、回交及系谱法选育,在BC1F2—BC1F4群体开展稻米品质分析评价,至BC1F7初步选定优良株系4W1-056,进一步利用捕获测序的方法,对鉴真2号、鄂中5号及66个4W1-056单株中的68个DNA片段进行PCR扩增,并测序,分析908个SNP位点。基于SNP位点的基因型,采用p-distance方法,使用MEGA7软件进行系统进化分析。结合系统进化分析、农艺性状和稻米品质的鉴定,对新品系的选育和鉴定进行评价。【结果】经杂交、回交和自交获得株型好、分蘖力强、茎秆粗壮、抗倒性好、外观品质优的稳定优良株系4W1-056。系统进化分析表明,从4W1-056优良株系中筛选的66个单株分成3个类群:类群Ⅰ、类群Ⅱ和类群Ⅲ。3个类群之间的碱基替代率为0.1398,类群Ⅰ和类群Ⅱ之间的碱基替代率为0.0662,而在各类群内的碱基替代率为0,表明同一类群内的单株没有遗传差异。结合农艺性状和稻米品质的鉴定,将类群Ⅱ作为新的品系,命名为ZY56,与4W1-056相比,其外观品质更好,垩白度为0.9,更接近鄂中5号。利用水稻8K SNP芯片检测ZY56及2个亲本(鉴真2号和鄂中5号),显示ZY56有14.13%的染色体片段来源于鉴真2号,85.87%的染色体片段来源于鄂中5号,进一步说明ZY56的主要基因源于鄂中5号,验证了杂交、回交和自交后的选择结果。特征特性研究结果显示,ZY56完成基本营养生长所需要的最低有效积温为760.5℃,生殖生长的临界光照长度为14 h 13 min,完成幼穗分化需要的有效积温高于711.5℃。不同播期的品质分析结果表明,ZY56对光照长度的反应明显弱于鄂中5号,但生长平稳,有利于稻米品质的形成,表明ZY56的稻米品质具有更好的稳定性。【结论】在资源创制高代选择中,利用高通量SNP分型技术进行遗传一致性筛选,将通过农艺性状测定等常规方法难以细分的材料进行类群细分,最终确定符合目标要求的株系。该方法克服了传统系谱法在高世代选择中针对农艺性状难以继续选择的困难,避免了同类单株重复选择和不同类单株漏选的问题,降低了高世代选择工作量,提高了选择效率,具有推广价值。
邱东峰,葛平娟,刘刚,杨金松,陈建国,张再君. 优质水稻新种质ZY56的创制及评价[J]. 中国农业科学, 2021, 54(6): 1081-1091.
DongFeng QIU,PingJuan GE,Gang LIU,JinSong YANG,JianGuo CHEN,ZaiJun ZHANG. Breeding and Evaluation of Elite Rice Line ZY56[J]. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091.
表1
鉴真2号与鄂中5号的主要性状表现"
品种 Variety | 播始历期 Duration from seedling to heading (d) | 单株穗数 Spike number per plant | 株高 Plant height (cm) | 结实率 Seed setting rate (%) | 千粒重 Thousand grain weight (g) | 单株产量 Yield per plant (g) | 长/宽 Length/width ratio | 垩白粒率 Chalky rice rate (%) | 垩白度 Chalkiness (%) | 胶稠度 Gel consistency (mm) |
---|---|---|---|---|---|---|---|---|---|---|
鉴真2号 Jianzhen 2 | 102 | 12.6 | 104.2 | 78.7 | 23.7 | 34.5 | 3.1 | 10.0 | 1.0 | 67 |
鄂中5号 Ezhong 5 | 103 | 10.1 | 117.9 | 76.6 | 24.0 | 26.3 | 3.6 | 0.0 | 0.0 | 83 |
表2
4W1-056各类群之间部分性状的差异"
类群 Cluster | 叶色 Leaf color | 全生育期 Entire growth period(d) | 出糙率 Husked rice yield (%) | 垩白粒率 Chalky rice rate (%) | 垩白度 Chalkiness degree (%) | 直链淀粉含量 Amylose content (%) | 胶稠度 Gel consistency (mm) |
---|---|---|---|---|---|---|---|
Ⅰ | 浅绿 Light green | 137 | 78.1 | 8 | 2.1 | 12.6 | 88 |
Ⅱ | 浅绿 Light green | 134 | 78.4 | 4 | 0.9 | 13.8 | 79 |
Ⅲ | 深绿 Light green | 136 | 76.5 | 9 | 2.6 | 13.0 | 84 |
表3
ZY56在多个生长地点的温光反应"
年份地点 Year and site | 播种期(月/日) Sowing date (M/D) | 始穗期(月/日) Initial heading date (M/D) | 播始历期 Duration from seedling to heading (d) | 总积温 Total accumulated temperature (℃) | 有效积温 Effective accumulated temperature (℃) | 基本营养生长期 Basic vegetative growth period(d) | 基本营养生长有效积温 Effective accumulated temperature of basic vegetative growth (℃) | 幼穗分化日 Date of spike differentiation (M/D) | 幼穗分化 临界光照时长 Critical day length for spike differentiation | 幼穗分化期积温 Accumulated temperature in spike differentiation period (℃) |
---|---|---|---|---|---|---|---|---|---|---|
2017荆州 2017 Jingzhou | 05/08 | 08/16 | 101 | 2772.0 | 1560.0 | 68 | 945.5 | 07/15 | 13 h 56 min | 1010.5 |
2017武汉 2017 Wuhan | 05/09 | 08/11 | 95 | 2583.0 | 1443.0 | 62 | 818.0 | 07/10 | 14 h 00 min | 1021.0 |
05/20 | 08/23 | 96 | 2672.5 | 1520.5 | 63 | 920.5 | 07/22 | 13 h 50 min | 996.0 | |
2017武穴 2017 Wuxue | 05/18 | 08/24 | 98 | 2750.5 | 1550.5 | 67 | 964.0 | 07/24 | 13 h 45 min | 982.5 |
05/30 | 09/03 | 96 | 2696.0 | 1532.0 | 64 | 992.5 | 08/02 | 13 h 33 min | 935.5 | |
06/12 | 09/11 | 92 | 2569.5 | 1465.5 | 59 | 966.0 | 08/11 | 13 h 20 min | 895.5 | |
2018枣阳 2018 Zaoyang | 04/18 | 08/04 | 109 | 2832.5 | 1524.5 | 76 | 929.0 | 07/03 | 14 h 13 min | 991.5 |
2018武汉 2018 Wuhan | 05/14 | 08/22 | 101 | 2882.0 | 1670.0 | 68 | 1044.0 | 07/21 | 13 h 51 min | 1022.0 |
2018荆州 2018 Jingzhou | 05/16 | 08/23 | 100 | 2818.0 | 1618.0 | 67 | 1003.5 | 07/22 | 13 h 51 min | 1010.5 |
2018江夏 2018 Jiangxia | 05/25 | 08/20 | 88 | 2542.0 | 1486.0 | 55 | 853.0 | 07/19 | 13 h 52 min | 1029.0 |
2018陵水 2018 Lingshui | 05/09 | 07/31 | 84 | 2435.0 | 1427.0 | 51 | 872.0 | 06/29 | 13 h 14 min | 951.0 |
11/27 | 03/21 | 115 | 2492.0 | 1112.0 | 85 | 760.5 | 02/20 | 11 h 37 min | 711.5 | |
12/01 | 03/31 | 121 | 2631.5 | 1179.5 | 91 | 827.5 | 03/02 | 11 h 47 min | 712.0 |
表4
不同播种期ZY56与鄂中5号的稻米品质分析结果(GB/T 17891-2017)"
品种 Variety | 播种期(月/日) Sowing date (M/D) | 始穗期(月/日) Initial heading date (M/D) | 国标等级 National standard grade | 出糙率 Husked rice yield (%) | 精米率 Milled rice rate (%) | 整精米率 Head rice yield (%) | 粒长 Grain length (mm) | 长/宽比 Length/width ratio | 垩白粒率 Chalky rice rate (%) | 垩白度 Chalkiness Degree (%) | 直链淀粉 含量 Amylose content (%) | 胶稠度 Gel consistency (mm) | 碱消值级 Alkali spreading value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
鄂中5号 Ezhong 5 | 05/18 | 08/23 | 优1 You 1 | 82.5 | 74.3 | 62.2 | 7.3 | 3.6 | 6 | 1.2 | 14.6 | 69 | 6.5 |
ZY56 | 08/25 | / | 78.5 | 71.4 | 63.9 | 7.2 | 3.6 | 11 | 2.9 | 13.6 | 80 | 6.3 | |
鄂中5号 Ezhong 5 | 05/30 | 08/25 | / | 79.9 | 72.8 | 64.7 | 7.2 | 3.4 | 6 | 1.2 | 13.8 | 73 | 7.0 |
ZY56 | 09/01 | 优1 You 1 | 75.2 | 68.1 | 63.1 | 7.2 | 3.6 | 4 | 1.0 | 14.5 | 70 | 6.7 | |
鄂中5号 Ezhong 5 | 06/12 | 08/31 | 优2 You 2 | 68.5 | 65.0 | 56.6 | 7.2 | 3.5 | 13 | 3.0 | 16.2 | 55 | 6.5 |
ZY56 | 09/12 | 优1 You 1 | 76.8 | 70.3 | 59.6 | 7.3 | 3.7 | 4 | 1.4 | 15.5 | 60 | 7.0 |
表5
不同播种期ZY56与鄂中5号的RVA谱特征值"
播种期(月/日) Sowing date(M/D) | 品种 Variety | 崩解值 Breakdown (RVU) | 峰值 Peak (RVU) | 谷值 Trough (RVU) | 终值 Final (RVU) | 回冷值 Setback (RVU) |
---|---|---|---|---|---|---|
05/18 | 鄂中5号 Ezhong 5 | 42.25 | 144.21 | 102.96 | 217.88 | 114.92 |
ZY56 | 43.92 | 138.38 | 94.46 | 208.75 | 41.58 | |
05/30 | 鄂中5号 Ezhong 5 | 58.67 | 167.63 | 108.96 | 229.79 | 84.25 |
ZY56 | 60.92 | 173.71 | 112.79 | 228.13 | 117.70 | |
06/12 | 鄂中5号 Ezhong 5 | 81.63 | 200.38 | 118.75 | 236.30 | 127.04 |
ZY56 | 76.71 | 189.88 | 113.17 | 232.92 | 119.75 |
表6
不同加工精米时间ZY56与鄂中5号直链淀粉含量和胶稠度变化"
播种期(月/日) Sowing date(M/D) | 品种 Variety | 精米30 s Milling for 30 s | 精米60 s Milling for 60 s | 精米90 s Milling for 90 s | |||
---|---|---|---|---|---|---|---|
直链淀粉含量 Amylose content (%) | 胶稠度 Gel consistency (mm) | 直链淀粉含量 Amylose content (%) | 胶稠度 Gel consistency (mm) | 直链淀粉含量 Amylose content (%) | 胶稠度 Gel consistency (mm) | ||
05/18 | 鄂中5号 Ezhong 5 | 14.2 | 90 | 14.0 | 77 | 13.9 | 78 |
ZY56 | 13.9 | 70 | 14.0 | 73 | 13.4 | 75 | |
05/30 | 鄂中5号 Ezhong 5 | 15.0 | 69 | 13.9 | 70 | 14.3 | 70 |
ZY56 | 15.8 | 68 | 16.0 | 65 | 16.4 | 56 | |
06/12 | 鄂中5号 Ezhong 5 | 17.3 | 52 | 15.5 | 60 | 19.2 | 40 |
ZY56 | 14.4 | 70 | 15.0 | 68 | 14.3 | 72 |
[1] | 黎舒佳, 高谨, 李家洋, 王永红. 独脚金内酯调控水稻分蘖的研究进展. 植物学报, 2015,50(5):539-548. |
LI S J, GAO J, LI J Y, WANG Y H. Advances in studies on the regulation of rice tiller by strigolactone. The Plant Journal, 2015,50(5):539-548. (in Chinese) | |
[2] | 黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇. 基于基因组学的作物种质资源研究: 现状与展望. 中国农业科学, 2015,48(17):3333-3353. |
LI Y, LI Y H, YANG Q W, ZHANG J P, ZHANG J M, QIU L J, WANG T Y. Genomics-based crop germplasm research: Advances and perspectives. Scientia Agricultura Sinica, 2015,48(17):3333-3353. (in Chinese) | |
[3] | 胡兴明, 钱前. 现阶段中国水稻种质创新的研究策略和应用思考. 植物遗传资源学报, 2004,5(2):193-196. |
HU X M, QIAN Q. Current research strategies and ways of utilization of new rice germplasm in China. Journal of Plant Genetic Resources, 2004,5(2):193-196. (in Chinese) | |
[4] | 余泓, 王冰, 陈明江, 刘贵富, 李家洋. 水稻分子设计育种发展与展望. 生命科学, 2018,30(10):1032-1037. |
YU H, WANG B, CHEN M J, LIU G F, LI J Y. Research advance and perspective of rice breeding by molecular design. Chinese Bulletin of Life Sciences, 2018,30(10):1032-1037. (in Chinese) | |
[5] | ZUO J, LI J. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. National Science Review, 2014,1:253-276. |
[6] | 符德保, 李燕, 肖景华, 张启发, 吴昌银. 中国水稻基因组学研究历史及现状. 生命科学, 2016,28:1113-1121. |
FU D B, LI Y, XIAO J H, ZHANG Q F, WU C Y. The history and current status of rice genomics research in China. Chinese Bulletin of Life Sciences, 2016,28:1113-1121. (in Chinese) | |
[7] |
LI Y, XIAO J H, CHEN L L, HUANG X H, CHENG Z K, HAN B, ZHANG Q F, WU C Y. Rice functional genomics research: past decade and future. Molecular Plant, 2018,11:359-380.
doi: 10.1016/j.molp.2018.01.007 pmid: 29409893 |
[8] |
WANG A H, HOU Q Q, SI L Z, HUANG X H, LUO J H, LU D F, ZHU J J, SHANGGUAN Y Y, MIAO J S, XIE Y F, WANG Y C, ZHAO Q, FENG Q, ZHOU C C, LI Y, FAN D L, LU Y Q, TIAN Q L, WANG Z X, HAN B. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiology, 2019,180:2077-2090.
doi: 10.1104/pp.18.01574 pmid: 31138620 |
[9] |
XUE W Y, XING Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147 |
[10] |
WANG J, ZHOU L, SHI H, MAWSHENG C, YU H, YI H, HE M, YIN J J, ZHU X B, LI Y, LI W T, LIU J L, WANG J C, CHEN X Q, QING H, WANG Y P, LIU G F, WANG W M, LI P, WU X J, ZHU L H, ZHOU J M, PAMELA C R, LI S Q, LI J Y, CHEN X W. A single transcription factor promotes both yield and immunity in rice. Science, 2018,361:1026-1028.
pmid: 30190406 |
[11] | TIAN Z X, QIAN Q, LIU Q Q, YAN M X, LIU X F, YAN C J, LIU G F, GAO Z Y, TANG S Z, ZENG D L, WANG Y H, YU J M, GU M H, LI J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009,106:21760-21765. |
[12] |
ZHAO D S, LI Q F, ZHANG C Q, ZHANG C Q, ZHANG C, YANG Q Q, PAN L X, REN X Y, LU J, GU M H, LIU Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 2018,9:1240.
pmid: 29588443 |
[13] |
HUANG X Y, CHAO D Y, GAO J P, ZHU M Z, SHI M, LIN H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 2009,23:1805-1817.
pmid: 19651988 |
[14] |
LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015,47:827-833.
doi: 10.1038/ng.3305 pmid: 25985140 |
[15] |
LIU Y Y, CAO Y L, ZHANG Q L, LI X H, WANG S P. A cytosolic triosephosphate isomerase is a key component in XA3/XA26- mediated resistance. Plant Physiology, 2018,178:923-935.
doi: 10.1104/pp.18.00348 pmid: 30158116 |
[16] |
HU L, WU Y, WU D, RAO W W, GUO J P, MA Y H, WANG Z Z, SHANGGUAN X X, WANG H Y, XU C X, HUANG J, SHI S J, CHEN R Z, DU B, ZHU L L, HE G C. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice. The Plant Cell, 2017,29:3157-3185.
pmid: 29093216 |
[17] |
HU B, WANG W, OU S J, TANG J Y, LI H, CHE R H, ZHANG Z H, CHAI X Y, WANG H R, WANG Y Q, LIANG C Z, LIU L C, PIAO Z Z, DENG Q Y, DENG K, XU C, LIANG Y, ZHANG L H, LI L G, CHU C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015,47:834-838.
doi: 10.1038/ng.3337 pmid: 26053497 |
[18] |
WANG Q, NIAN J Q, XIE X Z, YU H, ZHANG J, BAI J T, DONG G J, HU J, BAI B, CHEN L C, XIE Q J, FENG J, YANG X L, PENG J L, CHEN F, QIAN Q, LI J Y, ZUO J R. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 2018,9:735.
pmid: 29467406 |
[19] | 张先文, 贺治洲, 江南, 邓华凤, 李继明. 高通量基因型分型技术及其在水稻中的应用. 生物技术通报, 2017,33(12):67-73. |
ZHANG X W, HE Z Z, JIANG N, DENG H F, LI J M. High-throughput genotyping techniques and their applications in rice. Biotechnology Bulletin, 2017,33(12):67-73. (in Chinese) | |
[20] | 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49(22):4267-4283. |
ZHANG C Q, ZHAO D S, LI Q F, GU M H, LIU Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Scientia Agricultura Sinica, 2016,49(22):4267-4283. (in Chinese) | |
[21] | 王惠贞, 吴瑞芬, 李丹. 稻米品质形成和调控机理概述. 中国稻米, 2016,22(1):10-13. |
WANG H Z, WU R F, LI D. Review on rice quality formation and its regulation mechanism. China Rice, 2016,22(1):10-13. (in Chinese) | |
[22] | 李宏凯, 徐得泽, 陈亿毅. 优质中籼稻新品种鄂中5号的选育. 湖北农业科学, 2005(1):31-32. |
LI H K, XU D Z, CHEN Y Y. Breeding of a new middle indica rice line Ezhong 5 with high quality. Hubei Agricultural Sciences, 2005(1):31-32. (in Chinese) | |
[23] | 郑明. 高档优质中籼稻鄂中5号在孝感的种植表现. 中国稻米, 2015,21(6):105-106. |
ZHENG M. Planting performance of fine quality indica rice Ezhong 5 in Xiaogan City. China Rice, 2015,21(6):105-106. (in Chinese) | |
[24] | 张再君, 杨金松. 中国水稻品种志(湖北卷). 北京: 中国农业出版社, 2018: 76-79. |
ZHANG Z J, YANG J S. China Rice Varieties (Hubei Juan). Beijing: China Agriculture Press, 2018: 76-79. (in Chinese) | |
[25] | NEI M, KUMAR S. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 2000. |
[26] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33:1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[27] | 薛大伟, 方茂庭, 钱前. 有效积温在水稻生产中的应用. 中国稻米, 2004(4):47-48. |
XUE D W, FANG M T, QIAN Q. Application of effective accumulated temperature in rice production. China Rice, 2004(4):47-48. (in Chinese) | |
[28] | 舒庆尧, 吴殿星, 夏英武, 高明尉, Anna McClung. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31(3):25-29. |
SHU Q Y, WU D X, XIA Y W, GAO M W, ANNA M C. Relationship between RVA profile character and eating quality in Oryza sativa L. Scientia Agricultura Sinica, 1998,31(3):25-29. (in Chinese) | |
[29] | 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38(4):657-663. |
SUI J M, LI X, YAN S, YAN C J, ZHANG R, TANG S Z, LU J F, CHEN Z X, GU M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Scientia Agricultura Sinica, 2005,38(4):657-663. (in Chinese) | |
[30] | 邱东峰, 张再君, 辜大川, 殷明珠, 焦春海, 杨金松. 水稻R7606、229A系列优异资源的创制. 植物遗传资源学报, 2013,14(5):918-924. |
QIU D F, ZHANG Z J, GU D C, YIN M Z, JIAO C H, YANG J S. Breeding of elite rice lines R7606 and 229A. Journal of Plant Genetic Resources, 2013,14(5):918-924. (in Chinese) | |
[31] | 辜大川, 邱东峰, 殷明珠, 焦春海, 杨金松, 张再君, 刘春萍. 水稻优异资源分子身份证的构建. 湖北农业科学, 2012,51(24):5581-5586. |
GU D C, QIU D F, YIN M Z, JIAO C H, YANG J S, ZHANG Z J, LIU C P. Establishment of molecular identity card of elite rice resources. Hubei Agricultural Sciences, 2012,51(24):5581-5586. (in Chinese) | |
[32] | 李丹婷, 农保选, 夏秀忠, 刘开强, 杨庆文, 张宗文, 高国庆. 东南亚稻种资源收集与鉴定评价. 植物遗传资源学报, 2012,13(4):622-625. |
LI D T, NONG B X, XIA X Z, LIU K Q, YANG Q W, ZHANG Z W, GAO G Q. Collection and evaluation of rice germplasm from Southeast Asia. Journal of Plant Genetic Resources, 2012,13(4):622-625. (in Chinese) | |
[33] | 束爱萍, 刘增兵, 余丽琴, 黎毛毛, 陈大洲. 水稻SSR标记的遗传多样性研究进展. 植物遗传资源学报, 2013,14(5):918-924. |
SHU A P, LIU Z B, YU L Q, LI M M, CHEN D Z. Research progress on genetic diversity in rice based on SSR marker analysis. Journal of Plant Genetic Resources, 2013,14(5):918-924. (in Chinese) | |
[34] | 刘传光, 张桂权. 用SSR标记分析1949-2005年华南地区常规籼稻主栽品种遗传多样性及变化趋势. 作物学报, 2010,36(11):1843-1852. |
LIU C G, ZHANG G Q. SSR analysis of genetic diversity and the temporal trends of major commercial inbred Indica rice cultivars in south China in 1949-2005. Acta Agronomica Sinica, 2010,36(11):1843-1852. (in Chinese) | |
[35] | ZENG Y W, ZHANG H L, LI Z C, SHEN S Q, SUN J L, WANG M X, LIAO D Q, LIU X, WANG X K, XIAO F H, WEN G S. Evolution of genetic diversity of rice landraces (Oryza stiva L.) in Yunnan, China. Breeding Science, 2007,57:91-99. |
[36] | 陈峰, 朱其松, 徐建第, 孙公臣, 柳发财, 朱文银, 张洪瑞, 高洁, 袁守江. 山东地方水稻品种的农艺性状与品质性状的多样性分析. 植物遗传资源学报, 2012,13(3):393-397. |
CHEN F, ZHU Q S, XU J D, SUN G C, LIU F C, ZHU W Y, ZHANG H R, GAO J, YUAN S J. Diversity analysis of agronomic and quality characters of rice landraces in Shandong. Journal of Plant Genetic Resources, 2012,13(3):393-397. (in Chinese) |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[6] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[7] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[8] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[9] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[10] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[11] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[12] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[13] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[14] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[15] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
|