中国农业科学 ›› 2021, Vol. 54 ›› Issue (6): 1081-1091.doi: 10.3864/j.issn.0578-1752.2021.06.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

优质水稻新种质ZY56的创制及评价

邱东峰1(),葛平娟1,刘刚1,杨金松1,陈建国2(),张再君1()   

  1. 1湖北省农业科学院粮食作物研究所/粮食作物种质创新与遗传改良湖北省重点实验室,武汉 430064
    2湖北大学生命科学学院,武汉 430062
  • 收稿日期:2020-08-13 接受日期:2020-11-05 出版日期:2021-03-16 发布日期:2021-03-25
  • 通讯作者: 陈建国,张再君
  • 作者简介:邱东峰,Tel:18672779158;E-mail:qdflcp@163.com
  • 基金资助:
    国家重点研发计划(2016YFD0100101-05);国家作物种质资源库湖北分库(NICGR2020-31);物种资源保护费(1120162130135252037)

Breeding and Evaluation of Elite Rice Line ZY56

DongFeng QIU1(),PingJuan GE1,Gang LIU1,JinSong YANG1,JianGuo CHEN2(),ZaiJun ZHANG1()   

  1. 1Food Crop Institute, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    2School of Life Sciences, Hubei University, Wuhan 430062
  • Received:2020-08-13 Accepted:2020-11-05 Online:2021-03-16 Published:2021-03-25
  • Contact: JianGuo CHEN,ZaiJun ZHANG

摘要:

【目的】为避免未知基因和遗传背景等不可控因素对育种实践的影响,将高通量SNP分型技术与传统育种相结合,培育新品种,以提高育种效率,实现育种方法的改进,为优质食味稻米新种质的鉴定和创制方法提供参考。【方法】以鉴真2号和鄂中5号为亲本,通过杂交、回交及系谱法选育,在BC1F2—BC1F4群体开展稻米品质分析评价,至BC1F7初步选定优良株系4W1-056,进一步利用捕获测序的方法,对鉴真2号、鄂中5号及66个4W1-056单株中的68个DNA片段进行PCR扩增,并测序,分析908个SNP位点。基于SNP位点的基因型,采用p-distance方法,使用MEGA7软件进行系统进化分析。结合系统进化分析、农艺性状和稻米品质的鉴定,对新品系的选育和鉴定进行评价。【结果】经杂交、回交和自交获得株型好、分蘖力强、茎秆粗壮、抗倒性好、外观品质优的稳定优良株系4W1-056。系统进化分析表明,从4W1-056优良株系中筛选的66个单株分成3个类群:类群Ⅰ、类群Ⅱ和类群Ⅲ。3个类群之间的碱基替代率为0.1398,类群Ⅰ和类群Ⅱ之间的碱基替代率为0.0662,而在各类群内的碱基替代率为0,表明同一类群内的单株没有遗传差异。结合农艺性状和稻米品质的鉴定,将类群Ⅱ作为新的品系,命名为ZY56,与4W1-056相比,其外观品质更好,垩白度为0.9,更接近鄂中5号。利用水稻8K SNP芯片检测ZY56及2个亲本(鉴真2号和鄂中5号),显示ZY56有14.13%的染色体片段来源于鉴真2号,85.87%的染色体片段来源于鄂中5号,进一步说明ZY56的主要基因源于鄂中5号,验证了杂交、回交和自交后的选择结果。特征特性研究结果显示,ZY56完成基本营养生长所需要的最低有效积温为760.5℃,生殖生长的临界光照长度为14 h 13 min,完成幼穗分化需要的有效积温高于711.5℃。不同播期的品质分析结果表明,ZY56对光照长度的反应明显弱于鄂中5号,但生长平稳,有利于稻米品质的形成,表明ZY56的稻米品质具有更好的稳定性。【结论】在资源创制高代选择中,利用高通量SNP分型技术进行遗传一致性筛选,将通过农艺性状测定等常规方法难以细分的材料进行类群细分,最终确定符合目标要求的株系。该方法克服了传统系谱法在高世代选择中针对农艺性状难以继续选择的困难,避免了同类单株重复选择和不同类单株漏选的问题,降低了高世代选择工作量,提高了选择效率,具有推广价值。

关键词: 水稻, 种质创新, 资源评价

Abstract:

【Objective】In order to avoid the influences of unknown genes, genetic background and other uncontrollable factors in breeding practice, experiments were conducted to create new high-quality rice germplasm using an improved method, which integrated high-throughput SNP genotyping with traditional breeding to improve breeding efficiency. 【Method】 Two varieties of rice (Jianzhen 2 and Ezhong 5) were used as parents to make a cross (Ezhong 5/Jianzhen 2), and Ezhong 5 was used as recurrent parent to obtain backcross generations, whose progenies were selected by pedigree method. Rice qualities were evaluated in generations from BC1F2 to BC1F4. An elite line, 4W1-056, was screened in the generation of BC1F7. DNA segments from Jianzhen 2, Ezhong 5 and 66 plants of 4W1-056 were PCR-amplified and sequenced using capture sequencing technologies, and 908 SNP sites were analyzed. Phylogenetic analyses were performed based on genotypes of SNP sites using p-distance method in software MEGA7. Novel lines were selected and evaluated based on agronomic traits and rice qualities in combination with the results from phylogenetic analyses. 【Result】An elite line 4W1-056 was obtained by means of crossing, backcrossing and selfing, which has desirable plant type, strong tillering ability, good lodging resistance for stocky stems, excellent appearance quality and preliminarily stable in agronomic traits. Sixty-six plants selected from 4W1-056 were clustered into three groups based on the results from phylogenetic analyses. The base substitution rate among cluster Ⅰ, Ⅱ and cluster Ⅲ was 0.1398, and that between cluster I and Ⅱ was 0.0662. The base substitution rate within any of these clusters was 0, which suggested that there were no genetic differences among individual plants within the same cluster. Cluster II was designated ZY56 as a new line based on its agronomic traits and rice qualities, and its appearance quality is better than that of 4W1-056, with a chalkiness score of 0.9, which is closer to the appearance quality performance of Ezhong 5. ZY56 and its original parents were detected using 8K RICE SNP chips, the results showed that 14.13% of ZY56’s chromosome segments were from Jianzhen 2 and 85.87% were from Ezhong 5, Chip detection further showed that most of the genes in ZY56 originated from Ezhong 5, and verified the selection results after crossing, backcrossing and selfing. The minimum effective accumulated temperature needed for basic vegetative growth in ZY56 was 760.5℃, the critical light length for reproductive growth was 14 h 13 min, and the effective accumulated temperature needed for panicle differentiation was above 711.5℃. The results of quality analyses from experiments at different sowing dates showed that ZY56 responded to light length significantly weaker than Ezhong 5, its photosensitivity was weak and growth was stable, which was conducive to the development of rice qualities, and the rice qualities of ZY56 were more stable than Ezhong 5. 【Conclusion】We proposed a new method for the selection in higher generations of a germplasm development program, in which high-throughput SNP genotyping technology was used to screen plants for genetic consistency, and eventually to find out the strains that conform to breeding targets. This method overcame the difficulty in the selection for agronomic traits by means of traditional pedigree in advanced generations, and circumvented the problems that similar types of strains were repeatedly selected and different types were missed. The method saved efforts of selection in higher generations, while increased the efficiency of selection, so it had value of popularization.

Key words: rice, germplasm improvement, resources evaluation