中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2142-2153.doi: 10.3864/j.issn.0578-1752.2021.10.010
收稿日期:
2020-07-07
接受日期:
2020-09-03
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
魏猛
作者简介:
赵鹏,E-mail: 基金资助:
ZHAO Peng(),LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng()
Received:
2020-07-07
Accepted:
2020-09-03
Online:
2021-05-16
Published:
2021-05-24
Contact:
Meng WEI
摘要:
【目的】甘薯碳氮积累与分配是影响产量形成的关键因素。研究长期有机肥料添加条件下甘薯碳氮积累与分配的响应关系,为实现潮土区甘薯高产高效栽培提供科学依据。【方法】以40年潮土长期定位试验(徐州)为平台,选择不施肥(CK)、施氮磷钾肥(NPK)、施有机肥料(M)、有机肥料+氮磷钾肥处理(MNPK)处理作为研究对象,测定分析不同施肥措施下耕作层土壤性质、甘薯收获期的地上/地下部生物量以及各主要功能器官的碳氮含量,阐明不同施肥处理对甘薯碳氮含量及其在各功能器官中的分配比例的影响,以及不同施肥措施下甘薯地上、地下部碳氮比(C/N)的变化,并运用主成分分析法解析甘薯碳氮分配与土壤性质的关系。【结果】长期有机肥配施氮磷钾化肥(MNPK),相较单施有机肥料(M)或化肥(NPK),甘薯块根生物量与干物质量显著提高(P<0.05)。同时土壤全氮、速效钾含量均显著提高(P<0.05)。通过对土壤性质与甘薯碳氮固持及碳氮比之间的相关性分析表明,甘薯各器官碳氮固持量与土壤有机碳(SOC)、全氮(TN)、速效钾含量呈极显著正相关(P<0.01)。 而土壤有效磷(AP)含量并未与甘薯叶片碳氮含量表现出相关关系,但与块根氮固持量呈极显著正相关(P<0.01),相关系数达0.839。甘薯叶片C/N与土壤EC呈极显著正相关(P<0.01),叶柄与藤蔓C/N与土壤EC呈极显著负相关(P<0.01),甘薯地下块根C/N与土壤有效磷含量呈极显著负相关(P<0.01)。通过对碳氮固持量在地上部、地下部的分配比例以及地上部、地下部的C/N进行主成分分析(PCA),结果表明前两个轴共同解释了66.6%的变异,第一主成分轴贡献率为42.8%。CK与NPK处理在轴1上的排序较高,说明两者处理下土壤pH与EC值较高,且对于碳氮在甘薯地上部的分配以及地下部C/N的解释度较高。【结论】有机物料添加能够合理调配各器官C/N,提高碳氮在甘薯地下块根部分的分配比例,促进甘薯产量的形成。
赵鹏,刘明,靳容,陈晓光,张爱君,唐忠厚,魏猛. 长期施用有机肥对潮土区甘薯碳氮积累与分配的影响[J]. 中国农业科学, 2021, 54(10): 2142-2153.
ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area[J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
表2
不同处理土壤性质"
处理 Treatment | pH (1:5 water) | EC (μs·cm-1) | SOC (g·kg-1) | TN (g·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
---|---|---|---|---|---|---|
CK | 7.95±0.09 a | 356.73±20.54 a | 8.42±1.12 c | 0.73±0.04 d | 5.84±2.48 c | 38.08±5.44 d |
NPK | 7.91±0.06 ab | 130.78±7.16 b | 13.06±2.2 b | 1.22±0.12 c | 12.87±1.74 c | 92.11±2.28 b |
M | 7.94±0.04 a | 77.32±14.16 c | 17.63±1.49 a | 1.48±0.09 b | 173.84±22.6 a | 65.08±9.96 c |
MNPK | 7.82±0.05 b | 133.95±7.33 b | 18.18±1.13 a | 1.67±0.05 a | 131.45±8.58 b | 124.56±14.81 a |
表3
不同处理甘薯各器官生物量及干物质量"
处理 Treatment | 生物量 Biomass (t·hm-2) | 干物质量 Dry matter (t·hm-2) | ||||||
---|---|---|---|---|---|---|---|---|
地上部 Aboveground | 块根 Tuberous roots | 地上部 Aboveground | 块根 Tuberous roots | |||||
叶片 Leaf | 叶柄 Petiole | 藤蔓 Stem | 叶片 Leaf | 叶柄 Petiole | 藤蔓 Stem | |||
CK | 2.86 b | 1.49 c | 1.38 c | 11.44 c | 0.61 b | 0.15 c | 0.27 b | 4.03 c |
NPK | 7.37 a | 5.28 b | 5.23 b | 30.8 b | 1.62 a | 0.43 b | 1.05 a | 9.96 b |
M | 5.99 a | 5.99 ab | 5.99 ab | 38.33 b | 1.13 a | 0.53 ab | 0.94 a | 11.49 b |
MNPK | 7.81 a | 8.36 a | 7.26 a | 49.22 a | 1.41 a | 0.65 a | 1.04 a | 15.51 a |
表4
土壤性质与甘薯碳氮固持及碳氮比之间的相关性"
参数 Parameter | pH | EC | 土壤有机碳SOC | 全氮TN | 有效磷AP | 速效钾AK | |
---|---|---|---|---|---|---|---|
碳固持量 The fixation of C | 叶Leaf | -0.465 | -0.602* | 0.678** | 0.689** | 0.419 | 0.717** |
叶柄Periole | -0.432 | -0.768** | 0.839** | 0.839** | 0.655** | 0.736** | |
藤蔓Stem | -0.307 | -0.885** | 0.773** | 0.820** | 0.589* | 0.636** | |
根Root | -0.573* | -0.682** | 0.771** | 0.822** | 0.515* | 0.834** | |
氮固持量 The fixation of N | 叶Leaf | -0.328 | -0.738** | 0.659** | 0.695** | 0.339 | 0.730** |
叶柄Periole | -0.560* | -0.692** | 0.860** | 0.863** | 0.662** | 0.802** | |
藤蔓Stem | -0.363 | -0.790** | 0.722** | 0.750** | 0.541* | 0.628** | |
根Root | -0.393 | -0.719** | 0.861** | 0.887** | 0.839** | 0.621* | |
碳氮比 C/N | 叶Leaf | -0.017 | 0.662** | -0.280 | -0.385 | -0.120 | -0.343 |
叶柄Periole | 0.132 | -0.724** | 0.372 | 0.412 | 0.287 | 0.243 | |
藤蔓Stem | 0.020 | -0.643** | 0.420 | 0.524* | 0.313 | 0.368 | |
根Root | -0.044 | 0.242 | -0.461 | -0.409 | -0.782** | 0.081 |
图7
土壤性质与甘薯碳氮分配比例的主成分分析 A/G-C:地上部碳固持量比例Carbon fixation ratio of the above ground;A/G-N:地上部氮固持量比例Nitrogen fixation ratio of the above ground;A/G-C/N:地上部碳氮比Carbon nitrogen ratio of the above ground;U/G-C地下部碳固持量比例Carbon fixation ratio of the underground;U/G-N:地下部氮固持量比例Nitrogen fixation ratio of the underground;U/G-C/N:地下部碳氮比Carbon nitrogen ratio of the underground"
[1] |
MARQUES J M, DA SILVA T F, VOLLÚ R E, LACERDA G R, BLANK A F, SMALLA K, SELDINA L. Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Applied Soil Ecology, 2015,96:273-281.
doi: 10.1016/j.apsoil.2015.08.020 |
[2] |
SHEKHAR S, MISHRA D, BURAGOHAIN A K, CHAKRABORTY S, CHAKRABORT N. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.). Food Chemistry, 2015,173(15):957-965.
doi: 10.1016/j.foodchem.2014.09.172 |
[3] | 刘意, 杨新笋, 雷剑, 王连军, 柴沙沙, 张文英, 苏文瑾, 焦春海. 7种菜用甘薯品种(系)多酚类物质含量动态变化分析. 热带作物学报, 2020,41(7):1393-1401. |
LIU Y, YANG X S, LEI J, WANG L J, CHAI S S, ZHANG W Y, SU W J, JIAO C H. Analysis of polyphenol contents in seven vegetable sweet potato varieties. Chinese Journal of Tropical Crops, 2020,41(7):1393-1401. (in Chinese) | |
[4] |
DU X, XI M, KONG L. Split application of reduced nitrogen rate improves nitrogen uptake and use efficiency in sweetpotato. Scientific Reports, 2019,9(1):14058.
doi: 10.1038/s41598-019-50532-2 |
[5] | 李思明, 司成成, 刘永华, 梁清干, 黄婷, 朱国鹏. 不同甘薯品种块根营养品质与产量综合评价. 热带作物学报, 2020:1-7[2021-03-24].http://kns.cnki.net/kcms/detail/46.1019.S.20200509.1050.002.html. |
LI S M, SI C C, LIU Y H, LIANG Q G, HUANG T, ZHU G P. Comprehensive evaluation of root nutrition quality and yield of different sweet potato varieties. Journal of Tropical Crops, 2020: 1-7[2021-03-24].http://kns.cnki.net/kcms/detail/46.1019.S.20200509.1050.002.html.(in Chinese) | |
[6] | 王荫墀, 胡兆盛. 甘薯需肥特性的研究. 山东农业科学, 1981(1):7-12. |
WANG Y L, HU Z S. Study on fertilizer requirement of sweet potato. Agricultural Sciences of Shandong Province, 1981(1):7-12. (in Chinese) | |
[7] | 易中懿, 汪翔, 徐雪高, 秦建军, 陆建珍, 戴起伟. 品种创新与甘薯产业发展. 江苏农业学报, 2018,34(6):1401-1409. |
YI Z Y, WANG X, XU X G, QIN J J, LU J Z, DAI Q W. Variety innovation and sweet potato industry development. Jiangsu Agricultural Journal, 2018,34(6):1401-1409. (in Chinese) | |
[8] |
DU X B, KONG L C, XI M, ZHANG X Y. Split application improving sweetpotato yield by enhancing photosynthetic and sink capacity under reduced nitrogen condition. Field Crops Research, 2019,238:56-63.
doi: 10.1016/j.fcr.2019.04.021 |
[9] | 朱菜红, 董彩霞, 沈其荣, 徐阳春. 配施有机肥提高化肥氮利用效率的微生物作用机制研究. 植物营养与肥料学报, 2010,16(2):282-288. |
ZHU C H, DONG C X, SHEN Q R, XU Y C. Microbial mechanism of improving nitrogen use efficiency of chemical fertilizer by combined application of organic fertilizer. Journal of Plant Nutrition and Fertilizers, 2010,16(2):282-288. (in Chinese) | |
[10] |
AN T, SCHAEFFER S, LI S Y, FU S F, PEI J B, LI H, ZHUANG J, RADOSEVICH M, WANG J K. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biology and Biochemistry, 2015,80:53-61.
doi: 10.1016/j.soilbio.2014.09.024 |
[11] | 张晶, 张定一, 王丽, 毛平平, 赵娟, 王姣爱. 不同有机肥和氮磷组合对旱地小麦的增产机理研究. 植物营养与肥料学报, 2017,23(1):238-243. |
ZHANG J, ZHANG D Y, WANG L, MAO P P, ZHAO J, WANG J A. Study on the mechanism of increasing yield of dryland wheat by different organic fertilizer and nitrogen and phosphorus combination. Journal of Plant Nutrition and Fertilizer, 2017,23(1):238-243. (in Chinese) | |
[12] | 王文丽, 靳海波, 李娟, 赵旭. 生物有机肥料对连作马铃薯根际营养及生长发育的影响. 中国土壤与肥料, 2018(6):187-191. |
WANG W L, JIN H B, LI J, ZHAO X. Effects of bioorganic fertilizer on rhizosphere nutrition and growth of continuous cropping potato. Soil and Fertilizer Sciences in China, 2018(6):187-191. (in Chinese) | |
[13] | 谢静静, 翟胜, 邢柱东, 马德生, 赵雷, 王巨媛. 有机肥对甘薯叶片生理指标及营养品质的影响. 湖北农业科学, 2013,52(20):4875-4877. |
XIE J J, ZHAI S, XING Z D, MA D S, ZHAO L, WANG J Y. Effects of organic fertilizer on leaf physiological indexes and nutritional quality of sweet potato. Hubei Agricultural Sciences, 2013,52(20):4875-4877. (in Chinese) | |
[14] |
LIU Z, GUO Q, FENG Z Y, LIU Z D, LI H Y, SUN Y F, LIU C S, LAI H X. Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Applied Soil Ecology, 2020,147:103426.
doi: 10.1016/j.apsoil.2019.103426 |
[15] |
CHEN H, DENG A X, ZHANG W J, LI W, QIAO Y Q, YANG T M, ZHENG C Y, CAO C F, CHEN F. Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat. The Crop Journal, 2018,6(6):589-599.
doi: 10.1016/j.cj.2018.06.002 |
[16] | DU Y D, CUI B J, ZHANG Q, WANG Z, SUN J, NIU W Q. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena, 2020,193. |
[17] |
YANG J, GAO W, REN S. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil. Soil and Tillage Research, 2015,151:67-74.
doi: 10.1016/j.still.2015.03.008 |
[18] |
ZHANG X B, SUN N, WU L H, XU M G, BINGHAM I J, LI Z F. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Science of the Total Environment, 2016,562:247-259.
doi: 10.1016/j.scitotenv.2016.03.193 |
[19] |
CHEN Y X, WEN X X, SUN Y L, ZHANG J L, WU W, LIAO Y C. Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Scientia Horticulturae, 2014,172:248-257.
doi: 10.1016/j.scienta.2014.04.010 |
[20] |
SUN R B, ZHANG X X, GUO X S, WANG D Z, CHU H Y. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 2015,88:9-18.
doi: 10.1016/j.soilbio.2015.05.007 |
[21] | 王汝娟, 王振林, 梁太波, 张晓冬, 刘兰兰, 史春余. 腐植酸钾对食用甘薯品种钾吸收、利用和块根产量的影响. 植物营养与肥料学报, 2008(3):520-526. |
WANG R J, WANG Z L, LIANG T B, ZHANG X D, LIU L L, SHI C Y. Effects of potassium humate on potassium absorption, utilization and root tuber yield of edible sweet potato. Journal of Plant Nutrition and Fertilizers, 2008(3):520-526. (in Chinese) | |
[22] | 汪顺义, 李欢, 史衍玺. 不同施钾方式对甘薯钾素吸收及产量的影响. 植物营养与肥料学报, 2016,22(2):557-564. |
WANG S Y, LI H, SHI Y X. Effects of different potassium application methods on potassium absorption and yield of sweet potato. Journal of Plant Nutrition and Fertilizers, 2016,22(2):557-564. (in Chinese) | |
[23] | 魏猛, 张爱君, 诸葛玉平, 李洪民, 唐忠厚, 陈晓光. 长期不同施肥对黄潮土区冬小麦产量及土壤养分的影响. 植物营养与肥料学报, 2017,23(2):304-312. |
WEI M, ZHANG A J, ZHUGE Y P, LI H M, TANG Z H, CHEN X G. Effects of long-term different fertilization on winter wheat yield and soil nutrients in yellow fluvo-aquic soil region. Journal of Plant Nutrition and Fertilizers, 2017,23(2):304-312. (in Chinese) | |
[24] |
MI W H, SUN Y, XIA S Q, ZHAO H T, MI W T, BROOKES P C, LIU Y L, WU L H. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma, 2018,320:23-29.
doi: 10.1016/j.geoderma.2018.01.016 |
[25] |
LI J, ZHAO B Q, LI X Y, BING H. Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility. Agricultural Sciences in China, 2008,7(3):336-343.
doi: 10.1016/S1671-2927(08)60074-7 |
[26] |
DU X B, KONG L C, XI M, ZHANG X Y. Split application improving sweetpotato yield by enhancing photosynthetic and sink capacity under reduced nitrogen condition. Field Crops Research, 2019,238:56-63.
doi: 10.1016/j.fcr.2019.04.021 |
[27] |
GONG H R, LI J, MA J H, LI F D, OUYANG Z, GU C K. Effects of tillage practices and microbial agent applications on dry matter accumulation, yield and the soil microbial index of winter wheat in North China. Soil and Tillage Research, 2018,184:235-242.
doi: 10.1016/j.still.2018.07.002 |
[28] | 龚雪蛟, 秦琳, 刘飞, 刘东娜, 马伟伟, 张厅, 刘晓, 罗凡. 有机类肥料对土壤养分含量的影响. 应用生态学报, 2020,31(4):1403-1416. |
GONG X J, QIN L, LIU F, LIU D N, MA W W, ZHANG T, LIU X, LUO F. Effects of organic fertilizers on soil nutrient content. Journal of Applied Ecology, 2020,31(4):1403-1416. (in Chinese) | |
[29] | 史春余, 张晓冬, 张超, 陈晓光. 甘薯对不同形态氮素的吸收与利用. 植物营养与肥料学报, 2010,16(2):389-394. |
SHI C Y, ZHANG X D, ZHANG C, CHEN X G. Absorption and utilization of different forms of nitrogen in sweet potato. Journal of Plant Nutrition and Fertilizers, 2010,16(2):389-394. (in Chinese) | |
[30] | 冯蕾, 童成立, 石辉, 吴金水, 李勇, 黄铁平, 夏海鳌. 水稻碳氮吸收、分配与积累对施肥的响应. 环境科学, 2011,32(2):574-580. |
FENG L, TONG C L, SHI H, WU J S, LI Y, HUANG T P, XIA H A. Response of carbon and nitrogen uptake, distribution and accumulation to fertilization in rice. Environmental Science, 2011,32(2):574-580. (in Chinese) | |
[31] | 胡诚, 曹志平, 胡菊, 李双来. 长期施用生物有机肥土壤的氮矿化. 生态学报, 2009,29(4):2080-2086. |
HU C, CAO Z P, HU J, LI S L. Nitrogen mineralization in long-term application of bio organic fertilizer. Journal of Ecology, 2009,29(4):2080-2086. (in Chinese) | |
[32] |
KOLSTAD A L, ASPLUND J, NILSSON M C, OHLSON M, NYBAKKEN L. Soil fertility and charcoal as determinants of growth and allocation of secondary plant metabolites in seedlings of European beech and Norway spruce. Environmental and Experimental Botany, 2016,131:39-46.
doi: 10.1016/j.envexpbot.2016.06.013 |
[33] |
WEI S S, WANG X Y, SHI D Y, LI Y H, ZHANG J W, LIU P, ZHAO B, DONG S T. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. Plant Physiology and Biochemistry, 2016,105:118-128.
doi: 10.1016/j.plaphy.2016.04.007 |
[34] | 吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响. 作物学报, 2008(4):718-723. |
LÜ L H, TAO H B, WANG P, LIU M, ZHAO M, WANG R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(4):718-723. (in Chinese) | |
[35] | 谢军, 徐春丽, 陈轩敬, 王珂, 李丹萍, 张跃强, 石孝均. 不同施肥模式对玉米各器官碳氮累积和分配的影响. 草业学报, 2018,27(8):50-58. |
XIE J, XU C L, CHEN X J, WANG K, LI D P, ZHANG Y Q, SHI X J. Accumulation and distribution of carbon and nitrogen in various organs of maize under different fertilization regimes. Acta Prataculturae Sinica, 2018,27(8):50-58. (in Chinese) | |
[36] |
NEOCLEOUS D, SAVVAS D. The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Scientia Horticulturae, 2019,252:379-387.
doi: 10.1016/j.scienta.2019.04.007 |
[37] |
MOLLIER A, PELLERIN S. Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany, 1999,50(333):487-498.
doi: 10.1093/jxb/50.333.487 |
[38] | 陈洁, 梁国庆, 周卫, 王秀斌, 孙静文, 刘东海, 胡诚. 长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响. 植物营养与肥料学报, 2019,25(1):36-44. |
CHEN J, LIANG G Q, ZHOU W, WANG X B, SUN J W, LIU D H, HU C. Effects of long-term application of organic fertilizer on soil organic carbon and nitrogen components in rice wheat rotation system. Journal of Plant Nutrition and Fertilizer, 2019,25(1):36-44. (in Chinese) | |
[39] |
WU L, ZHANG W J, WEI W J, HE Z L, KUZYAKOV Y, BOL R, HU R G. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 2019,135:383-391.
doi: 10.1016/j.soilbio.2019.06.003 |
[40] |
CERASOLI S, MAILLARD P, SCARTAZZA A, BRUGNOLI E, CHAVES M M, PEREIRA J S. Carbon and nitrogen winter storage and remobilisation during seasonal flush growth in two-year-old cork oak (Quercus suber L.) saplings. Annals of Forest Science, 2004,61(7):721-729.
doi: 10.1051/forest:2004058 |
[41] | 孙红, 姜亦文, 于昕, 相广庆, 姚玉新. 根系局部NaCl处理对葡萄植株伤害度、Na+积累和碳氮分配的影响. 中国农业科学, 2019,52(7):1173-1182. |
SUN H, JIANG Y W, YU X, XIANG G Q, YAO Y X. Effects of NaCl treatment on injury degree, Na+ accumulation and carbon and nitrogen distribution of grape plants . Scientia Agricultura Sinica, 2019,52(7):1173-1182. (in Chinese) | |
[42] | 胡雨彤, 郝明德, 王哲, 付威. 不同降水年型下长期施肥旱地小麦产量效应. 应用生态学报, 2017,28(1):135-141. |
HU Y T, HAO M D, WANG Z, FU W. Effect of long-term fertilization on winter wheat yield from the dry land under different precipitation patterns. Chinese Journal of Applied Ecology, 2017,28(1):135-141. (in Chinese) | |
[43] | 王传杰, 王齐齐, 徐虎, 高洪军, 朱平, 徐明岗, 张文菊. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 2018,38(11):3848-3858. |
WANG C J, WANG Q Q, XU H, GAO H J, ZHU P, XU M G, ZHANG W J. Carbon, nitrogen and phosphorus stoichiometry characteristics of bulk soil, organic matter, and microbial biomass under long-term fertilization in cropland. Acta Ecologica Sinica, 2018,38(11):3848-3858. (in Chinese) |
[1] | 张学林, 吴梅, 何堂庆, 张晨曦, 田明慧, 李晓立, 侯小畔, 郝晓峰, 杨青华, 李潮海. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729-742. |
[2] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[3] | 崔鹏,赵逸人,姚志鹏,庞林江,陆国权. 低温对甘薯淀粉理化特性及代谢关键基因表达量的影响[J]. 中国农业科学, 2022, 55(19): 3831-3840. |
[4] | 张英强,张水勤,李燕婷,赵秉强,袁亮. 不同含羧基有机酸改性尿素在石灰性潮土中的转化特征[J]. 中国农业科学, 2022, 55(17): 3355-3364. |
[5] | 范文静,刘明,赵鹏,张强强,吴德祥,郭鹏宇,朱晓亚,靳容,张爱君,唐忠厚. 甘薯苗期耐低氮基因型筛选及不同氮效率类型综合评价[J]. 中国农业科学, 2022, 55(10): 1891-1902. |
[6] | 郭迎新,陈永亮,苗琪,范志勇,孙军伟,崔振岭,李军营. 洱海流域植烟土壤养分时空变异特征及肥力评价[J]. 中国农业科学, 2022, 55(10): 1987-1999. |
[7] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[8] | 王欣,李强,曹清河,马代夫. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 483-492. |
[9] | 赵珊,仲伶俐,秦琳,黄世群,李曦,郑幸果,雷欣宇,雷绍荣,郭灵安,冯俊彦. 不同干燥方式对甘薯叶功能成分及抗氧化活性的影响[J]. 中国农业科学, 2021, 54(21): 4650-4663. |
[10] | 靳容,刘明,赵鹏,张强强,张爱君,唐忠厚. 甘薯丝裂原活化蛋白激酶MPK6对低温胁迫的响应[J]. 中国农业科学, 2021, 54(20): 4265-4273. |
[11] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[12] | 赵付枚,王爽,田雨婷,乔奇,王永江,张德胜,张振臣. 甘薯病毒病发生关键因素研究[J]. 中国农业科学, 2021, 54(15): 3232-3240. |
[13] | 沈升法,项超,吴列洪,李兵,罗志高. 甘薯块根可溶性糖组分特征及其与食味的关联分析[J]. 中国农业科学, 2021, 54(1): 34-45. |
[14] | 任涛,郭丽璇,张丽梅,杨旭坤,廖世鹏,张洋洋,李小坤,丛日环,鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析[J]. 中国农业科学, 2020, 53(8): 1606-1616. |
[15] | 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同时期干旱胁迫对甘薯生长和抗氧化能力的影响[J]. 中国农业科学, 2020, 53(6): 1126-1139. |
|