[1] |
CHINNUSAMY V, ZHU J K, SUNKAR R. Gene regulation during cold stress acclimation in plants. Methods in Molecular Biology, 2010: 39-55.
|
[2] |
解则义. 贮藏期甘薯响应冷胁迫的miRNA及其靶基因鉴定分析[D]. 徐州: 江苏师范大学, 2017.
|
|
XIE Z Y. Identifies chilling responsive miRNAs and their targets in sweetpotato (Ipomoea batatas Lam.) during storage[D]. Xuzhou: Jiangsu Normal University, 2017. (in Chinese)
|
[3] |
马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28(5):969-973.
|
|
MA D F, LI Q, CAO Q H, NIU F X, XIE Y P, TANG J, LI H M. Development and prospect of sweetpotato industry and its technologies in China. Jiangsu Journal of Agricultural Sciences, 2012, 28(5):969-973. (in Chinese)
|
[4] |
SEGER R, KREBS E G. The MAPK signaling cascade. The FASEB journal, 1995, 9(9):726-735.
doi: 10.1096/fsb2.v9.9
|
[5] |
MIZOGUCHI T, ICHIMURA K, SHINOZAKI K. Environmental stress response in plants: The role of mitogen-activated protein kinases. Trends in Biotechnology, 1997, 15(1):15-19.
doi: 10.1016/S0167-7799(96)10074-3
|
[6] |
DE Z A, COLCOMBET J, HIRT H. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science, 2016, 21(8):677-685.
doi: 10.1016/j.tplants.2016.04.004
|
[7] |
FURUYA T, MATSUOKA D, NANMORI T. Membrane rigidification functions upstream of the MEKK1-MKK2-MPK4 cascade during cold acclimation in Arabidopsis thaliana. FEBS Letters, 2014, 588(11):2025-2030.
doi: 10.1016/j.febslet.2014.04.032
|
[8] |
XIE G, KATO H, IMAI R. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochemical Journal, 2012, 443(1):95-102.
doi: 10.1042/BJ20111792
|
[9] |
TEIGE M, SCHEIKL E, EULGEM T, DOCZI F, ICHIMURA K, SHINOZAKI K, DANGL J L, HIRT H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 2004, 15(1):141-152.
doi: 10.1016/j.molcel.2004.06.023
|
[10] |
SHOU H, BORDALLO P, FAN J B, YEAKLEY J M, BIBIKOVA M, SHEEN J, WANG K. Expression of an active tobacco mitogen- activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9):3298-3303.
|
[11] |
KOVTUN Y, CHIU W L, TENA G, SHEEN J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(6):2940-2945.
|
[12] |
KONG X P, PAN J W, ZHANG M Y, XING X, ZHOU Y, LIU Y, LI D P, LI D Q. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell & Environment, 2011, 34(8):1291-1303.
|
[13] |
YU L, YAN J, YANG Y, ZHU W M. Overexpression of tomato mitogen-activated protein kinase SlMPK3 in tobacco increases tolerance to low temperature stress. Plant Cell, Tissue and Organ Culture, 2015, 121(1):21-34.
doi: 10.1007/s11240-014-0675-1
|
[14] |
PAN J, ZHANG M, KONG X, XING X, LIU Y K, ZHOU Y, LIU Y, SUN L P, LI D Q. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta, 2012, 235(4):661-676.
doi: 10.1007/s00425-011-1510-0
|
[15] |
ROBINSON M J, COBB M H. Mitogen-activated protein kinase pathway. Current Opinion Cell Biology, 1997, 9(2):180-186.
doi: 10.1016/S0955-0674(97)80061-0
|
[16] |
DROILLARD M, BOUDSOCQ M, BARBIER-BRYGOO H, LAURIERE, C. Different protein kinase families are activated by osmotic stresses in Arabidopsis cell suspensions: Involvement of the MAP kinase AtMPK3 and AtMPK6. FEBS Letters, 2002, 527:43-50.
doi: 10.1016/S0014-5793(02)03162-9
|
[17] |
LIU Y, ZHANG D, WANG L, LI D Q. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Molecular Biology Reporter, 2013, 31(6):1446-1460.
doi: 10.1007/s11105-013-0623-y
|
[18] |
XIE G, KATO H, SASAKI K, IMAI R. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Letters, 2009, 583(17):2734-2738.
doi: 10.1016/j.febslet.2009.07.057
|
[19] |
KIM H S, PARK S C, JI C Y, PARK S, JEONG J C, LEE H S, KWAK S S. Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato. Plant Physiology & Biochemistry, 2016, 108:37-48.
|
[20] |
HODGES D M, DELONG J M, PRANGE F. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207(4):604-611.
doi: 10.1007/s004250050524
|
[21] |
ZHOU B, WANG J, GUO Z, TAN H Q, ZHU X C. A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regulation, 2006, 49(2/3):113-118.
doi: 10.1007/s10725-006-9000-2
|
[22] |
BAXTER A, MITTLER R, SUZUKI N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5):1229-1240.
doi: 10.1093/jxb/ert375
|
[23] |
江苏省农业科学院. 中国甘薯栽培学. 第12版. 上海: 上海科学技术出版社, 1984.
|
|
Jiangsu Academy of Agricultural Sciences. Sweetpotato Cultivation in China. 12th ed. Shanghai: Shanghai Science and Technology Press, 1984. (in Chinese)
|
[24] |
KIM Y H, KIM M D, PARK S C, YANG K S, JEONG J C, LEE H S, KWAK S S. SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress. Plant Physiology Biochemistry, 2011, 49(12):1436-1441.
doi: 10.1016/j.plaphy.2011.09.002
|
[25] |
JI C Y, JIN R, XU Z, KIM H S, LEE C J, KANG L, KIM S E, LEE H U, LEE J S, KANG C H, CHI Y H, LEE S Y, XIE Y P, LI H M, MA D F, KWAK S S. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC Plant Biology, 2017, 17:139.
doi: 10.1186/s12870-017-1087-2
|
[26] |
GONG Z Z, XIONG L M, SHI H Z, YANG S H, HERRERA- ESTRELLA L R, XU G H, CHAO D Y, LI J R, WANG P Y, QIN F, LI J J, DING Y L, SHI Y T, WANG Y, TANG Y Q, GUO Y, ZHU J K. Plant abiotic stress response and nutrient use efficiency. Science China-Life sciences, 2020, 63(5):635-674.
doi: 10.1007/s11427-020-1683-x
|
[27] |
HU W H, WU Y, ZENG J Z, HE L, ZENG Q M. Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica, 2010, 48(4):537-544.
doi: 10.1007/s11099-010-0071-y
|
[28] |
THEOCHARIS A, CLÉMENT C, BARKA E A. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 35(6):1091-1105.
|
[29] |
BANTI V, MAFESSONI F, LORETI E, ALPI A, PERATA P. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiology, 2010, 152(3):1471-1483.
doi: 10.1104/pp.109.149815
|
[30] |
VOLKOV R A, PANCHUK I I, MULLINEAUX P M, SCHÖFFL F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Molecular Biology, 2006, 61(4/5):733-746.
doi: 10.1007/s11103-006-0045-4
|
[31] |
SHI Y T, DING Y L, YANG S H. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiology, 2015, 56(1):7-15.
doi: 10.1093/pcp/pcu115
|
[32] |
CHINNUSAMY V, OHTA M, KANRAR S, LEE B H, HONG X, AGARWAL M, ZHU J K. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Development, 2003, 17(8):1043-1054.
doi: 10.1101/gad.1077503
|
[33] |
DONG M A, FARRÉ E M, THOMASHOW M F. Circadian clock associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proceedings of the National Academy Sciences of the United States of America, 2011, 108(17):7241-7246.
|
[34] |
JIANG B C, SHI Y T, ZHANG X Y, XIN X Y, QI L J, GUO H W, LI J W, YANG S H. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32):E6695-E6702.
|
[35] |
KIM W Y, FUJIWARA S, SUH S S, KIM J, KIM Y, HAN L, DAVID K, PUTTERILL J, NAM H G, SOMERS D E. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 2007, 449(7160):356-360.
doi: 10.1038/nature06132
|
[36] |
NORÉN L, KINDGREN P, STACHULA P, RÜHL M, ERIKSSON M E, HURRY V, STRAND Å. HSP90, ZTL, PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expression. Plant Physiology, 2016, 171:1392-1406.
|
[37] |
JIN R, KIM B H, JI C Y, KIM H S, MA D F, KWAK S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 2017, 118:45-54.
doi: 10.1016/j.plaphy.2017.06.002
|
[38] |
PITZSCHKE A, HIRT H. Mitogen-activated protein kinase and reactive oxygen species signaling in plants. Plant Physiology, 2006, 141(2):351-356.
doi: 10.1104/pp.106.079160
|
[39] |
NISHIHAMA R, BANNO H, KAWAHARA E, IRIE K, MACHIDA Y. Possible involvement of differential splicing in regulation of the activity of Arabidopsis ANP1 that is related to mitogen-activated protein kinase kinase kinases (MAPKKKs). The Plant Journal, 1997, 12(1):39-48.
doi: 10.1046/j.1365-313X.1997.12010039.x
|
[40] |
LI H, DING Y L, SHI Y T, ZHANG X Y, ZHANG S Q, GONG Z Z, YANG S H. MPK3-and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Developmental Cell, 2017, 43(5):630-642.
doi: 10.1016/j.devcel.2017.09.025
|
[41] |
ZHANG Z Y, LI J H, LI F, LIU H H, YANG W, CHONG K, XU Y Y. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Developmental Cell, 2017, 43(6):731-743.
doi: 10.1016/j.devcel.2017.11.016
|