中国农业科学 ›› 2021, Vol. 54 ›› Issue (2): 296-309.doi: 10.3864/j.issn.0578-1752.2021.02.006
赵卫松(),郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平(
)
收稿日期:
2020-04-16
接受日期:
2020-05-19
出版日期:
2021-01-16
发布日期:
2021-02-03
通讯作者:
马平
作者简介:
赵卫松,Tel:0312-5927076;E-mail: 基金资助:
ZHAO WeiSong(),GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping(
)
Received:
2020-04-16
Accepted:
2020-05-19
Online:
2021-01-16
Published:
2021-02-03
Contact:
Ping MA
摘要:
【目的】通过研究马铃薯健康植株与黄萎病株的根际土壤真菌群落结构与功能多样性的差异,明确土壤真菌群落结构与黄萎病发生之间的关系,为最终从微生物生态学的角度解释马铃薯黄萎病的发生原因及其生态防控提供理论依据。【方法】以河北省坝上地区马铃薯健株与黄萎病株的根际土壤为研究对象,分别利用实时荧光定量PCR(real-time PCR)和高通量测序(Illumina MiSeq)技术检测根际土壤中大丽轮枝菌(Verticillium dahliae)ITS基因拷贝数量并分析真菌群落结构变化,结合冗余分析(RDA)明确真菌群落结构与土壤养分的相关性。同时利用Biolog-ECO平板法比较健株与黄萎病株根际土壤微生物对碳源的利用能力。【结果】马铃薯黄萎病的发生与土壤中大丽轮枝菌ITS基因拷贝数量存在相关性,在病株根际土壤中病原菌数量高,而在健株根际土壤中未检测到病原菌。高通量测序分析表明,病株根际土壤真菌多样性指数低于健康植株,但多样性差异不显著。在群落组成的门水平上,与健株根际土壤相比,病株根际土壤中的子囊菌门(Ascomycota)和丝孢菌门(Mortierellomycota)相对丰度上升幅度分别为20.68%和16.16%,而担子菌门(Basidiomycota)的相对丰度下降51.43%。在属水平上,病株根际土壤中轮枝菌属(Verticillium)、青霉属(Penicillium)、维希尼克氏酵母属(Vishniacozyma)、红酵母属(Rhodotorula)和芽枝霉属(Cladosporium)的相对丰度呈上升趋势,增加倍数分别为71.96、3.62、6.11、15.38和6.24倍,而小不整球壳属(Plectosphaerella)、Guehomyces、葡萄穗霉属(Stachybotrys)、赤霉属(Gibberella)、曲霉属(Aspergillus)菌群的相对丰度下降幅度分别为45.10%、61.41%、96.87%、45.85%和44.39%。真菌群落组成与土壤养分的冗余分析(RDA)表明,健株根际土壤优势群落的相对丰度(如小不整球壳属、Guehomyces、葡萄穗霉属、赤霉属、曲霉属)与硝态氮、有机质和pH呈正相关,而黄萎病株根际土壤优势群落的相对丰度(如轮枝菌属、链格孢属、刺盘孢属、被孢霉属、腐质霉属、青霉属、维希尼克氏酵母属、红酵母属和芽枝霉属)与无机磷和速效磷呈正相关。不同根际土壤的AWCD值表明,病株根际土壤微生物对碳源的利用能力高于健株。进一步分析发现,与健株相比,病株土壤微生物对羧酸类碳源的利用能力显著提高,而对氨基酸类、胺类、碳水化合物类、聚合物类和双亲化合物类碳源利用能力差异不显著。【结论】病株的根际土壤真菌多样性降低和群落结构改变是马铃薯黄萎病发生的重要特征,其中轮枝菌属菌群的相对丰度显著提高是最主要特征,并且真菌群落结构受土壤养分影响。同时,病株根际土壤微生物对羧酸类碳源利用能力显著提高。
赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309.
ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization[J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
表1
健株与黄萎病株根际土壤养分变化"
指标 Index | 健株Healthy plant | 病株Diseased plant |
---|---|---|
硝态氮NO3--N (mg·kg-1) | 13.38±4.48a | 10.03±7.69b |
pH | 6.89±0.02a | 6.83±0.03a |
速效磷AP (mg·kg-1) | 373.51±60.03b | 897.00±20.08a |
无机磷IP (μg·g-1) | 99.40±11.71b | 189.84±18.26a |
有机质OM (%) | 0.77±0.01a | 0.64±0.01b |
数据后不同小写字母表示差异显著(P<0.05)。下同 Different lowercases after the data indicate significant difference (P<0.05). The same as below |
表2
健株和黄萎病株根际土壤真菌Alpha多样性"
处理 Treatment | Sobs 指数 Sobs index | 香浓指数 Shannon index | 辛普森指数 Simpson index | ACE 指数 ACE index | Chao I 指数 Chao I index |
---|---|---|---|---|---|
健株Healthy plant | 236.50±21.42a | 2.5066±0.2077a | 0.1753±0.0364a | 291.44±17.11a | 292.95±20.21a |
病株Diseased plant | 222.00±15.10a | 2.4829±0.2238a | 0.1730±0.0504a | 280.17±25.83a | 278.20±27.49a |
图6
土壤养分含量与真菌属水平群落结构的冗余分析 绿色圆形代表健株根际土壤(1—4),红色圆形代表黄萎病株根际土壤(5—8) Plectosphaerella:小不整球壳属;Verticillium:轮枝菌属;Fusarium:镰孢菌属;Alternaria:链格孢属;Colletotrichum:刺盘孢属;Mortierella:被孢霉属;Stachybotrys:葡萄穗霉属;Humicola:腐质霉属;Gibberella:赤霉属;Aspergillus:曲霉属;Penicillium:青霉属;Vishniacozyma:维希尼克氏酵母属;Rhodotorula:红酵母属;Cladosporium:芽枝霉属"
[1] | JING R, LI H Y, HU X P, SHANG W J, SHEN R Q, GUO C J, GUO Q Y, SUBBARAO K V. Verticillium wilt caused by Verticillium dahliae and V. nonalfalfae in potato in northern China. Plant Disease, 2018,102(10):1958-1964. |
[2] | 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 熊兴耀, 高玉林. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019,52(16):2800-2808. |
XU J, ZHU J H, YANG Y L, TANG H, LÜ H P, FAN M S, SHI Y, DONG D F, WANG G J, WANG W X, XIONG X Y, GAO Y L. Status of major diseases and insect pests of potato and pesticide usage in China. Scientia Agricultura Sinica, 2019,52(16):2800-2808. (in Chinese) | |
[3] |
ROWE R C, POWELSON M L. Potato early dying: Management challenges in a changing production environment. Plant Disease, 2002,86(11):1184-1193.
doi: 10.1094/PDIS.2002.86.11.1184 pmid: 30818465 |
[4] |
WIGGINS B E, KINKEL L L. Green manures and crop sequences influence potato diseases and pathogen inhibiting activity of indigenous streptomycetes. Phytopathology, 2005,95(2):178-185.
pmid: 18943988 |
[5] | 陈爱昌, 魏周全, 马永强, 邓成贵. 甘肃省马铃薯黄萎病病原分离与鉴定. 植物病理学报, 2013,43(4):418-420. |
CHEN A C, WEI Z Q, MA Y Q, DENG C G. Isolation and identification of the pathogens causing potato verticillium wilt in Gansu. Acta Phytopathologica Sinica, 2013,43(4):418-420. (in Chinese) | |
[6] | 王丽丽, 蔡超, 罗明, 顾爱星, 王慧, 李克梅. 马铃薯黄萎病研究现状. 生物安全学报, 2017,26(1):30-38. |
WANG L L, CAI C, LUO M, GU A X, WANG H, LI K M. Research advances of verticillium wilt of potato. Journal of Biosafety, 2017,26(1):30-38. (in Chinese) | |
[7] | 景瑞, 赵方杰, 刘一凡, 商文静, 沈瑞清, 郭青云, 胡小平. 宁夏马铃薯黄萎病病原菌分离鉴定及寄主范围测定. 植物病理学报, 2019,49(1):11-19. |
JING R, ZHAO F J, LIU Y F, SHANG W J, SHEN R Q, GUO Q Y, HU X P. Isolation and identification of potato verticillium wilt pathogen in Ningxia and its host range. Acta Phytopathologica Sinica, 2019,49(1):11-19. (in Chinese) | |
[8] | 赵卫松, 李社增, 鹿秀云, 郭庆港, 王培培, 苏振贺, 张晓云, 马平. 防治马铃薯黄萎病芽胞杆菌种子处理剂的研制及应用. 中国生物防治学报, 2019,35(5):759-767. |
ZHAO W S, LI S Z, LU X Y, GUO Q G, WANG P P, SU Z H, ZHANG X Y, MA P. Development and application of Bacillus spp. seed-treating agent against potato verticillium wilt. Chinese Journal of Biological Control, 2019,35(5):759-767. (in Chinese) | |
[9] | 赵晓军, 张键, 张贵, 张园园, 周洪友, 赵君. 马铃薯黄萎病病原菌营养亲和群、生理小种、交配型鉴定以及致病力差异分析. 植物保护学报, 2018,45(6):1212-1219. |
ZHAO X J, ZHANG J, ZHANG G, ZHANG Y Y, ZHOU H Y, ZHAO J. Identification of the vegetative compatibility groups (VCGs), races, mating types, and pathogenicity differentiation of pathogenic bacteria of potato verticillium wilt. Journal of Plant Protection, 2018,45(6):1212-1219.(in Chinese) | |
[10] | 李社增, 周洪友, 鹿秀云, 年冠臻, 郭庆港, 赵卫松, 东保柱, 申建芳, 王培培, 张晓云, 闫磊, 马平. 中国七省(自治区)马铃薯黄萎病病情及优势病原菌致病力分析. 植物病理学报, 2018,48(5):656-665. |
LI S Z, ZHOU H Y, LU X Y, NIAN G Z, GUO Q G, ZHAO W S, DONG B Z, SHEN J F, WANG P P, ZHANG X Y, YAN L, MA P. Occurrence of potato verticillium wilt and analysis of pathogenicity differentiation of the major pathogen in seven provinces of China. Acta Phytopathologica Sinica, 2018,48(5):656-665. (in Chinese) | |
[11] | GORISSEN A, VAN OVERBEEK L S, VAN ELSAS J D. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil. Canadian Journal of Microbiology, 2004,50(8):587-593. |
[12] | VAN BRUGGEN A H C, SEMENOV A M, VAN DIEPENINGEN A D, DE VOS O J, BLOK W J. Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. European Journal of Plant Pathology, 2006,115(1):105-122. |
[13] | YANG C H, CROWLEY D E, MENGE J A. 16S rDNA finger printing of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiology Ecology, 2001,35(2):129-136. |
[14] | 祈建军, 姚槐应, 李先恩, 薛梅, 马小军. 磷脂脂肪酸法分析地黄根际土壤微生物多样性. 土壤, 2008,40(3):448-454. |
QI J J, YAO H Y, LI X E, XUE M, MA X J. Analysis of soil microbial diversity in Rehmannia glutinosa rhizosphere with phospholipid fatty acid method. Soils, 2008,40(3):448-454. (in Chinese) | |
[15] |
陈杰, 郭天文, 谭雪莲, 朱渭兵, 魏晓丽, 王东胜, 薛泉宏. 马铃薯连作地健康株与病株根区土壤微生态特性比较. 作物学报, 2013,39(11):2055-2064.
doi: 10.3724/SP.J.1006.2013.02055 |
CHEN J, GUO T W, TAN X L, ZHU W B, WEI X L, WANG D S, XUE Q H. Comparison of microecological characterization in rhizosphere soil between healthy and diseased plants in continuous cropping potato fields. Acta Agronomica Sinica, 2013,39(11):2055-2064. (in Chinese)
doi: 10.3724/SP.J.1006.2013.02055 |
|
[16] | ADAMS R I, MILETTO M, TAYLOR J W, BRUNS T D. Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal, 2013,7(7):1262-1273. |
[17] | 赵卫松, 郭庆港, 李社增, 王亚娇, 鹿秀云, 王培培, 苏振贺, 张晓云, 马平. 西兰花残体还田对棉花黄萎病防治效果及其对不同生育时期土壤细菌群落的影响. 中国农业科学, 2019,52(24):4505-4517. |
ZHAO W S, GUO Q G, LI S Z, WANG Y J, LU X Y, WANG P P, SU Z H, ZHANG X Y, MA P. Control efficacy of broccoli residues on cotton verticillium wilt and its effect on soil bacterial community at different growth stages. Scientia Agricultura Sinica, 2019,52(24):4505-4517. (in Chinese) | |
[18] | WANG C, ZHENG M M, SONG W F, WEN S L, WANG B R, ZHU C Q, SHEN R F. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in Southern China. Soil Biology and Biochemistry, 2017,113:240-249. |
[19] |
GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991,57(8):2351-2359.
doi: 10.1128/AEM.57.8.2351-2359.1991 pmid: 16348543 |
[20] | WAGG C, DUDENHOFFER J H, WIDMER F, VAN DER HEIJDEN M G A. Linking diversity, synchrony and stability in soil microbial communities. Functional Ecology, 2018,32(5):1280-1292. |
[21] | 吴照祥, 郝志鹏, 陈永亮, 曾燕, 郭兰萍, 黄璐琦, 王勇, 陈保冬. 三七根腐病株根际土壤真菌群落组成与碳源利用特征研究. 菌物学报, 2015,34(1):65-74. |
WU Z X, HAO Z P, CHEN Y L, ZENG Y, GUO L P, HUANG L Q, WANG Y, CHEN B D. Characterization of fungal community composition and carbon source utilization in the rhizosphere soil of Panax notoginseng suffering from root-rot disease. Mycosystema, 2015,34(1):65-74. (in Chinese) | |
[22] | GAMLIEL A, AUSTERWEIL M, KRITZMAN G. No-chemical approach to soilborne pest management—organic amendments. Crop Protection, 2000,19(8/10):847-853. |
[23] | BULLUCK L R, BROSIUS M, EVANYLO G K, RISTAINO J B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 2002,19(2):147-160. |
[24] | BAKKER M G, GLOVER J D, MAI J G, KINKEL L L. Plant community effects on the diversity and pathogen suppressive activity of soil streptomycetes. Applied Soil Ecology, 2010,46(1):35-42. |
[25] | BRUSSAARD L, DE RUITER P, BROWN G G. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment, 2007,121(3):233-244. |
[26] | 刘海洋, 王伟, 张仁福 热西达·阿不都热合曼, 姚举. 黄萎病不同发生程度棉田土壤中的真菌群落特征分析. 中国农业科学, 2019,52(3):455-465. |
LIU H Y, WANG W, ZHANG R F, RAXIDA A, YAO J. Fungal community structure of cotton-field soil under different incidences of cotton verticillium wilt. Scientia Agricultura Sinica, 2019,52(3):455-465. (in Chinese) | |
[27] | 李忠奎, 凌爱芬, 李红丽, 陈娟, 朱显俊, 王勇, 陈玉蓝, 王岩. 基于多样性测序对健康与易感病烟田根际土壤微生物群落分析. 河南农业大学学报, 2019,53(6):918-925. |
LI Z K, LING A F, LI H L, CHEN J, ZHU X J, WANG Y, CHEN Y L, WANG Y. Analysis of rhizosphere soil microbial communities in healthy and susceptible tobacco fields based on diversity sequencing. Journal of Henan Agricultural University, 2019,53(6):918-925. (in Chinese) | |
[28] |
SHANG Q H, YANG G, WANG Y, WU X K, ZHAO X, HAO H T, LI Y Y, XIE Z K, ZHANG Y B, WANG R Y. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World Journal of Microbiology and Biotechnology, 2016,32(6):95.
doi: 10.1007/s11274-016-2051-2 pmid: 27116961 |
[29] | 宋旭红, 谭均, 李隆云, 王钰, 伍晓丽. Illumina高通量测序揭示黄连根腐根际土壤真菌群落组成及多样性. 中草药, 2018,49(22):5396-5403. |
SONG X H, TAN J, LI L Y, WANG Y, WU X L. Illumina high-throughput sequencing reveals fungal community composition and diversity in root rot of Coptis chinensis in rhizosphere soil. Chinese Traditional and Herbal Drugs, 2018,49(22):5396-5403. (in Chinese) | |
[30] | LUAN F G, WANG L, LIU Y N, LOU Y Y, ZHANG H Y, ZHANG L L. Analysis of culturable fungal diversity in rhizosphere soil of healthy and diseased cotton in Southern Xinjiang. African Journal of Microbiology Research, 2012,6(47):7357-7364. |
[31] | 涂祖新, 张莉莉, 贺伟华, 占智高, 王金昌. 赣南脐橙黄龙病株与健康株的根际土壤真菌群落多样性比较. 安徽农业大学学报, 2017,44(2):333-341. |
TU Z X, ZHANG L L, HE W H, ZHAN Z G, WANG J C. Fungi diversity in the soil around the healthy and huanglongbing-diseased roots of Citrus sinensis Osbeck in Southern Jiangxi Province. Journal of Anhui Agricultural University, 2017,44(2):333-341. (in Chinese) | |
[32] | 白霜, 薛泉宏, 赵邑尘, 曹书苗, 同延安, 王晓辉, 徐万里. 新疆棉区不同含盐土壤棉花健株与黄萎病株根区放线菌研究. 西北农林科技大学学报(自然科学版) , 2009,37(7):183-190. |
BAI S, XUE Q H, ZHAO Y C, CAO S M, TONG Y A, WANG X H, XU W L. Study on actinomycetic ecology between healthy and diseased plants’ rhizosphere with different salt contents in Xinjiang. Journal of Northwest A&F University (Natural Science Edition), 2009,37(7):183-190. (in Chinese) | |
[33] | 段春梅, 薛泉宏, 呼世斌, 赵娟, 魏样, 王玲娜, 申光辉, 陈秦. 连作黄瓜枯萎病株、健株根域土壤微生物生态研究. 西北农林科技大学学报(自然科学版), 2010,38(4):143-150. |
DUAN C M, XUE Q H, HU S B, ZHAO J, WEI Y, WANG L N, SHEN G H, CHEN Q. Microbial ecology of fusarium wilt infected and healthy cucumber plant in root zone of continuous cropping soil. Journal of Northwest A&F University (Natural Science Edition), 2010,38(4):143-150. (in Chinese) | |
[34] | BAUSENWEIN U, GATTINGER A, LANGER U, EMBACHER A, HARTMANN H P, SOMMER M, MUNCH J, SCHLOTER M. Exploring soil microbial communities and soil organic matter: Variability and interactions in arable soils under minimum tillage practice. Applied Soil Ecology, 2008,40(1):67-77. |
[35] | SHEN Z Z, PENTON C R, LV N, XUE C, YUAN X F, RUAN Y Z, LI R, SHEN Q R. Banana fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microbial Ecology, 2018,75(1):739-750. |
[36] |
LIU X, ZHANG J L, GU T Y, ZHANG W M, SHEN Q R, YIN S X, QIU H Z. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE, 2014,9(1):e86610.
doi: 10.1371/journal.pone.0086610 pmid: 24497959 |
[37] | LEON M C C, STONE A, DICK R P. Organic soil amendments: Impacts on snap bean common root rot (Aphanomyes euteiches) and soil quality. Applied Soil Ecology, 2006,31(3):199-210. |
[38] | DAVIS J R, HUISMAN O C, EVERSON D O, SCHNEIDER A T. Verticillium wilt of potato: A model of key factors related to disease severity and tuber yield in Southeastern Idaho. American Journal of Potato Research, 2001,78:291. |
[39] | ASCHI A, AUBERT M, RIAH-ANGLET W, NELIEU S, DUBOIS C, AKPA-VINCESLAS M, TRINSOUTROT-GATTIN I. Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. Applied Soil Ecology, 2017,120:219-228. |
[40] | ZHANG H, XU W X, LI Y B, LYU J L, CAO Y F, HE W X. Changes of soil microbial communities during decomposition of straw residues under different land uses. Journal of Arid Land, 2017,9(5):666-677. |
[41] | JIANG L L, HAN G M, LAN Y, LIU S N, GAO J P, YANG X, MENG J, CHEN W F. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. Journal of Integrative Agriculture, 2017,16(3):713-724. |
[42] | RUTGERS M, WOUTERSE M, DROST S M, BREURE A M, MULDER C, STONE D, CREAMER R E, WINDING A, BLOEM J. Monitoring soil bacteria with community-level physiological profiles using BiologTM ECO-plates in the Netherlands and Europe. Applied Soil Ecology, 2016,97:23-35. |
[43] | 张丽娟, 茆军, 张志东, 谢玉清. 新疆大蒜根腐型病害根际土壤微生物群落多样性初探. 新疆农业科学, 2013,50(11):2109-2117. |
ZHANG L J, MAO J, ZHANG Z D, XIE Y Q. Study of microbial community diversity in rhizosphere soil from garlic infected by root rot disease. Xinjiang Agricultural Sciences, 2013,50(11):2109-2117. (in Chinese) | |
[44] | 顾美英, 徐万里, 张志东, 唐光木, 唐琦勇, 雇玉忠, 宋素琴, 古丽尼沙·沙依木, 杨波, 冯雷. 不同腐烂病发病程度核桃根区土壤微生物多样性分析. 新疆农业科学, 2018,55(6):1107-1116. |
GU M Y, XU W L, ZHANG Z D, TANG G M, TANG Q Y, GU Y Z, SONG S Q, GULINISHA S, YANG B, FENG L. Analysis of soil microbial diversity in root zone of walnut orchard with different levels of rot disease. Xinjiang Agricultural Sciences, 2018,55(6):1107-1116. (in Chinese) | |
[45] | 苗则彦, 赵奎华, 刘长远, 梁春浩, 林凤. 健康与罹病黄瓜根际微生物数量及真菌区系研究. 中国生态农业学报, 2004,12(3):156-157. |
MIAO Z Y, ZHAO K H, LIU C Y, LIANG C H, LIN F. Rhizosphere microorganism quantity and fungal flora of healthy and infected cucumber plants by F. oxysporum. Chinese Journal of Eco-Agriculture, 2004,12(3):156-157. (in Chinese) | |
[46] | 韩雪, 吴凤芝, 潘凯. 根系分泌物与土传病害关系之研究综述. 中国农学通报, 2006,2(22):316-318. |
HAN X, WU F Z, PAN K. Review on the relation between the root exudates and soil-spread disease. Chinese Agricultural Science Bulletin, 2006,2(22):316-318. (in Chinese) | |
[47] | BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health. Trends in Plants Science, 2012,17(8):478-486. |
[1] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[2] | 马雪萌,余成敏,赛小玲,刘贞,桑海洋,崔百明. PSORA:一种基于高通量测序的T-DNA插入位点分析方法[J]. 中国农业科学, 2022, 55(15): 2875-2882. |
[3] | 郭迎新,陈永亮,苗琪,范志勇,孙军伟,崔振岭,李军营. 洱海流域植烟土壤养分时空变异特征及肥力评价[J]. 中国农业科学, 2022, 55(10): 1987-1999. |
[4] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[5] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[6] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[7] | 黄子粤,刘文君,覃仁柳,庞师婵,肖健,杨尚东. 不同品种南瓜内生细菌多样性及PICRUSt基因功能预测分析[J]. 中国农业科学, 2021, 54(18): 4018-4032. |
[8] | 张小雪,孙天歌,张迎春,陈丽华,张新宇,李艳军,孙杰. 大丽轮枝菌木糖苷酶基因的鉴定及基于HIGS技术的功能分析[J]. 中国农业科学, 2021, 54(15): 3219-3231. |
[9] | 赵鹏,刘明,靳容,陈晓光,张爱君,唐忠厚,魏猛. 长期施用有机肥对潮土区甘薯碳氮积累与分配的影响[J]. 中国农业科学, 2021, 54(10): 2142-2153. |
[10] | 任涛,郭丽璇,张丽梅,杨旭坤,廖世鹏,张洋洋,李小坤,丛日环,鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析[J]. 中国农业科学, 2020, 53(8): 1606-1616. |
[11] | 陈露露,王会,王吉坤,王嘉博,柴志欣,陈智华,钟金城. 藏黄牛与宣汉黄牛心脏miRNA表达谱比较[J]. 中国农业科学, 2020, 53(8): 1677-1687. |
[12] | 赵卫松,郭庆港,李社增,王培培,鹿秀云,苏振贺,张晓云,马平. 花铃期棉花黄萎病抗病与感病品种对 土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942-954. |
[13] | 温延臣,李海燕,袁亮,徐久凯,马荣辉,林治安,赵秉强. 长期定位施肥对潮土剖面养分分布的影响[J]. 中国农业科学, 2020, 53(21): 4460-4469. |
[14] | 王丽,王朝辉,郭子糠,陶振魁,郑洺钧,黄宁,高志源,张欣欣,黄婷苗. 黄土高原不同地点小麦籽粒矿质元素的含量差异[J]. 中国农业科学, 2020, 53(17): 3527-3540. |
[15] | 李宝鑫,杨俐苹,卢艳丽,师校欣,杜国强. 我国葡萄主产区的土壤养分丰缺状况[J]. 中国农业科学, 2020, 53(17): 3553-3566. |
|