中国农业科学 ›› 2021, Vol. 54 ›› Issue (21): 4650-4663.doi: 10.3864/j.issn.0578-1752.2021.21.014
赵珊1(),仲伶俐1,秦琳1,黄世群1,李曦1,郑幸果1,雷欣宇1,雷绍荣1,郭灵安1,冯俊彦2,*()
收稿日期:
2021-02-25
接受日期:
2021-05-14
出版日期:
2021-11-01
发布日期:
2021-11-09
通讯作者:
冯俊彦
作者简介:
联系方式:赵珊,Tel:028-84504142;E-mail: 基金资助:
ZHAO Shan1(),ZHONG LingLi1,QIN Lin1,HUANG ShiQun1,LI Xi1,ZHENG XingGuo1,LEI XinYu1,LEI ShaoRong1,GUO LingAn1,FENG JunYan2,*()
Received:
2021-02-25
Accepted:
2021-05-14
Online:
2021-11-01
Published:
2021-11-09
Contact:
JunYan FENG
摘要:
【目的】探讨不同干燥方式对甘薯叶功能成分含量及抗氧化能力的影响,为甘薯叶综合开发和干燥加工工艺优化提供理论依据。【方法】以甘薯品种‘台农71’和‘胜南’的叶片为材料,研究蒸干结合热风干燥、真空冷冻干燥、60℃/50℃/40℃热风干燥共5种干燥方式对甘薯叶功能成分(总酚、总黄酮、绿原酸类成分、β-胡萝卜素、维生素D3、维生素E、抗坏血酸、维生素B1、维生素B2)、抗氧化能力(采用DPPH、ABTS+自由基清除法测定)和外观色泽(叶绿素、色值)的影响,并分析各功能成分间及功能成分与抗氧化活性的关系。【结果】甘薯叶中检测到的游离酚酸主要包括新绿原酸、绿原酸、隐绿原酸、咖啡酸、异绿原酸A、异绿原酸B和异绿原酸C。5种干燥方式对甘薯叶中功能成分有不同程度的影响。真空冷冻干燥下,‘台农71’叶片中游离酚酸总量最高,达到38.4 mg·g-1DW,是其在60℃热风干燥下含量的25.6倍。真空冷冻干燥和蒸干结合热风干燥下,叶片中总酚、总黄酮和抗坏血酸含量差异相对较小,但都显著高于60℃/50℃/40℃ 3种热风干燥。真空冷冻干燥下,两个材料的总酚和总黄酮含量最高,分别是3种热风干燥的1.7—5.3倍和1.7—3.8倍。抗坏血酸在真空冷冻干燥下有较好的保留(175.3—441.1 mg/100 g DW),而在热风干燥中含量极低(3.4—5.7 mg/100 g DW)。维生素D3和α-生育酚在蒸干结合热风干燥下含量最高。抗氧化活性分析表明,不同干燥方式下甘薯叶甲醇提取物抗氧化活性差异显著(P<0.05),其中真空冷冻干燥和蒸干结合热风干燥的自由基清除率较高,显著高于3种热风干燥。相关性分析表明,总酚、总黄酮、总绿原酸、维生素D3、α-生育酚之间存在极显著相关性(P<0.01);甘薯叶抗氧化能力与总酚、总黄酮及各绿原酸类成分的含量也存在极显著相关(P<0.01)。【结论】真空冷冻干燥和蒸干结合热风干燥能较好地保留甘薯叶中总酚、绿原酸及衍生物、黄酮、维生素D3、α-生育酚、抗坏血酸等功能成分,使叶片干燥后仍具有较强的抗氧化能力。与真空冷冻干燥相比,蒸干结合热风干燥具有成本低和耗时短的优势,是实际生产应用中干燥保留甘薯叶多酚和黄酮的优选方式。
赵珊,仲伶俐,秦琳,黄世群,李曦,郑幸果,雷欣宇,雷绍荣,郭灵安,冯俊彦. 不同干燥方式对甘薯叶功能成分及抗氧化活性的影响[J]. 中国农业科学, 2021, 54(21): 4650-4663.
ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves[J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
表1
目标化合物的质谱分析参数"
酚酸 Phenolic acid | 保留时间 Retention time (min) | 质荷比Mass-to-charge ratio (m/z) | 锥孔电压 Cone voltage (V) | 碰撞能量 Collision energy (eV) | |
---|---|---|---|---|---|
母离子 Parent ion | 子离子 Daughter ion | ||||
1-咖啡酰奎宁酸 1-CQA | 2.99 | 353.10 | 191.03*, 84.92 | 16 | 20, 42 |
新绿原酸 5-CQA | 3.77 | 352.95 | 190.96*, 178.93 | 30 | 20, 18 |
绿原酸 3-CQA | 5.15 | 352.92 | 190.98*, 84.92 | 20 | 16, 42 |
隐绿原酸 4-CQA | 5.51 | 352.95 | 172.95*, 178.93 | 14 | 16, 16 |
咖啡酸 Caffeic acid | 6.38 | 178.91 | 134.92*, 78.88 | 24 | 14, 24 |
1,3-双咖啡酰奎宁酸 1,3-diCQA | 7.19 | 515.16 | 353.11*, 179.00 | 12 | 18, 32 |
异绿原酸B 3,4-diCQA | 12.87 | 515.02 | 172.95*, 353.04 | 8 | 26, 20 |
1,5-双咖啡酰奎宁酸 1,5-diCQA | 12.89 | 515.16 | 191.03*, 353.11 | 10 | 30, 16 |
异绿原酸A 3,5-diCQA | 13.26 | 514.96 | 353.04*, 190.97 | 32 | 18, 32 |
异绿原酸C 4,5-diCQA | 13.96 | 514.96 | 353.04*, 172.95 | 4 | 18, 30 |
表2
不同干燥方式下甘薯叶中酚酸的含量"
材料 Material | 干燥方式 Drying method | 酚酸 Phenolic acid (mg·g-1 DW) | |||||||
---|---|---|---|---|---|---|---|---|---|
新绿原酸 5-CQA | 绿原酸 3-CQA | 隐绿原酸 4-CQA | 咖啡酸 CA | 异绿原酸B 3,4-diCQA | 异绿原酸A 3,5-diCQA | 异绿原酸C 4,5-diCQA | 总量 Total | ||
台农71 Tainong 71 | 蒸干结合热风干燥 SD+HAD | 3.45±0.12b | 4.37±0.20b | 2.15±0.10a | 0.04±0.01b | 6.05±0.32b | 9.31±0.49b | 4.38±0.32a | 29.8±1.5b |
真空冷冻干燥 VFD | 3.87±0.08a | 4.86±0.15a | 2.09±0.06a | 2.70±0.22a | 7.50±0.25a | 15.82±0.82a | 1.51±0.05c | 38.4±1.6a | |
60℃热风干燥 60℃ HAD | 0.17±0.01e | 0.22±0.03e | 0.08±0.01d | 0.01±0.00b | 0.26±0.04e | 0.59±0.07d | 0.13±0.01d | 1.5±0.2e | |
50℃热风干燥 50℃ HAD | 0.55±0.02d | 1.13±0.08d | 0.30±0.01c | 0.03±0.00b | 2.01±0.13d | 4.97±0.35c | 1.36±0.10c | 10.3±0.6d | |
40℃热风干燥 40℃ HAD | 1.02±0.05c | 1.53±0.05c | 0.56±0.02b | 0.04±0.01b | 4.00±0.20c | 5.64±0.49c | 2.10±0.20b | 14.9±1.0c | |
胜南 Shengnan | 蒸干结合热风干燥 SD+HAD | 1.67±0.03a | 2.57±0.05b | 1.11±0.02a | 0.07±0.01b | 4.58±0.15a | 3.86±0.12b | 4.10±0.05a | 17.9±0.3a |
真空冷冻干燥 VFD | 1.25±0.02b | 3.23±0.01a | 0.57±0.00b | 0.41±0.01a | 2.30±0.10b | 4.50±0.18a | 1.26±0.02b | 13.5±0.3b | |
60℃热风干燥 60℃ HAD | 0.09±0.01e | 0.15±0.01e | 0.04±0.00e | 0.01±0.00c | 0.16±0.01e | 0.30±0.01e | 0.16±0.01e | 0.9±0.0e | |
50℃热风干燥 50℃ HAD | 0.14±0.00d | 0.33±0.01d | 0.08±0.00d | 0.01±0.00c | 0.52±0.01d | 0.92±0.01d | 0.57±0.01d | 2.6±0.0d | |
40℃热风干燥 40℃ HAD | 0.39±0.01c | 0.86±0.01c | 0.19±0.00c | 0.01±0.00c | 1.17±0.04c | 1.50±0.09c | 0.87±0.04c | 5.0±0.2c |
表3
不同干燥方式对甘薯叶色值的影响"
材料 Material | 干燥方式 Drying method | 亮度 Lightness (L*) | 红绿值Redness/greenness (a*) | 黄蓝值Yellowness/blueness (b*) |
---|---|---|---|---|
台农71 Tainong 71 | 蒸干结合热风干燥 SD+HAD | 56.68±0.68b | -4.41±0.05d | 4.86±0.05e |
真空冷冻干燥 VFD | 57.07±0.05b | -6.37±0.05b | 12.62±0.06a | |
60℃热风干燥 60℃HAD | 57.95±0.28a | -3.47±0.08e | 6.03±0.12d | |
50℃热风干燥 50℃HAD | 55.79±0.14c | -6.11±0.04c | 10.17±0.08c | |
40℃热风干燥 40℃HAD | 55.71±0.10c | -7.02±0.01a | 11.74±0.02b | |
胜南 Shengnan | 蒸干结合热风干燥 SD+HAD | 55.04±0.16b | -4.02±0.05d | 5.02±0.04d |
真空冷冻干燥 VFD | 56.32±0.53a | -7.93±0.27a | 12.41±0.47a | |
60℃热风干燥 60℃HAD | 53.13±0.12c | -4.06±0.04d | 8.72±0.12b | |
50℃热风干燥 50℃HAD | 53.37±0.14c | -4.87±0.05c | 8.13±0.09c | |
40℃热风干燥 40℃HAD | 53.10±0.17c | -6.15±0.07b | 9.11±0.11b |
表4
甘薯叶功能成分间的相关性分析"
相关性 Correlation | 总黄酮 Total flavonoids | 总绿原酸 Total caffeoylquinic acids | β-胡萝卜素 β-carotene | 维生素D3 Vitamin D3 | α-生育酚 α-tocopherol | L(+)-抗坏血酸 L(+)-ascorbic acid | 维生素B1 Vitamin B1 | 维生素B2 Vitamin B2 |
---|---|---|---|---|---|---|---|---|
总酚 Total phenolic acids | 0.961** | 0.905** | 0.034 | 0.574** | 0.775** | 0.640** | -0.928** | -0.485** |
总黄酮 Total flavonoids | 0.842** | 0.125 | 0.477** | 0.704** | 0.741** | -0.900** | -0.433* | |
总绿原酸 Total caffeoylquinic acids | 0.055 | 0.766** | 0.773** | 0.402* | -0.809** | -0.476** | ||
β-胡萝卜素 β-carotene | 0.387* | 0.250 | 0.453** | -0.033 | 0.331 | |||
维生素D3 Vitamin D3 | 0.733** | 0.129 | -0.517** | -0.243 | ||||
α-生育酚 α-tocopherol | 0.342 | -0.742** | -0.328 | |||||
L(+)-抗坏血酸 L(+)-ascorbic acid | -0.560** | 0.024 | ||||||
维生素B1 Vitamin B1 | 0.697** |
表5
甘薯叶中8项功能成分的主成分分析"
指标 Index | PC1 | PC2 | PC3 |
---|---|---|---|
总酚 Total phenolic acids | 0.967 | -0.093 | -0.120 |
总黄酮 Total flavonoids | 0.946 | 0.001 | -0.255 |
β-胡萝卜素 β-carotene | 0.212 | 0.879 | 0.175 |
维生素D3 Vitamin D3 | 0.666 | 0.191 | 0.666 |
α-生育酚 α-tocopherol | 0.844 | 0.078 | 0.353 |
L(+)-抗坏血酸 L(+)-ascorbic acid | 0.639 | 0.467 | -0.598 |
维生素B1 Vitamin B1 | -0.953 | 0.225 | 0.088 |
维生素B2 Vitamin B2 | -0.524 | 0.715 | -0.084 |
特征值 Characteristic value | 4.620 | 1.604 | 1.051 |
方差贡献率 Variance contribution rate (%) | 57.746 | 20.053 | 13.137 |
累计方差贡献率 Cumulative variance contribution rate (%) | 57.746 | 77.799 | 90.936 |
表6
干燥的甘薯叶抗氧化能力与总酚、总黄酮及绿原酸类化合物含量间的相关性分析"
相关性 Correlation | 总酚 Total phenolic acids | 总黄酮 Total flavonoids | 总绿原酸 Total caffeoylquinic acids | 新绿原酸 5-CQA | 绿原酸 3-CQA | 隐绿原酸 4-CQA | 咖啡酸 CA | 异绿原酸A 3,5-diCQA | 异绿原酸B 3,4-diCQA | 异绿原酸C 4,5-diCQA |
---|---|---|---|---|---|---|---|---|---|---|
DPPH | 0.989** | 0.957** | 0.925** | 0.883** | 0.948** | 0.873** | 0.553** | 0.829** | 0.921** | 0.745** |
ABTS+ | 0.954** | 0.931** | 0.865** | 0.797** | 0.869** | 0.774** | 0.577** | 0.818** | 0.861** | 0.635** |
[1] | 木泰华, 孙红男, 张苗, 王成, 陈井旺, 邓福明, 何伟忠, 李鹏高, 刘兴丽, 马梦梅, 梅新, 彭小燕, 王晓梅, 席丽莎, 熊志冬, 张燕燕. 甘薯深加工技术. 北京: 科学出版社, 2014. |
MU T H, SUN H N, ZHANG M, WANG C, CHEN J W, DENG F M, HE W Z, LI P G, LIU X L, MA M M, MEI X, PENG X Y, WANG X M, XI L S, XIONG Z D, ZHANG Y Y. Sweet Potato Processing Technology. Beijing: Science Press, 2014. (in Chinese) | |
[2] | 马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28(5):969-973. |
MA D F, LI Q, CAO Q H, NIU F X, XIE Y P, TANG J, LI H M. Development and prospect of sweetpotato industry and its technologies in China. Jiangsu Journal of Agricultural Sciences, 2012, 28(5):969-973. (in Chinese) | |
[3] |
AN L V, FRANKOW-LINDBERG B E, LINDBERG J E. Effect of harvesting interval and defoliation on yield and chemical composition of leaves, stems and tubers of sweet potato (Ipomoea batatas L. (Lam.)) plant parts. Field Crops Research, 2003, 82(1):49-58.
doi: 10.1016/S0378-4290(03)00018-2 |
[4] |
JOHNSON M, PACE R D. Sweet potato leaves: Properties and synergistic interactions that promote health and prevent disease. Nutrition Reviews, 2010, 68(10):604-615.
doi: 10.1111/nure.2010.68.issue-10 |
[5] |
SUN H N, MU T H, XI L S, SONG Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves. Journal of Agricultural and Food Chemistry, 2014, 62(36):8982-8989.
doi: 10.1021/jf502328d |
[6] |
ISLAM S. Sweetpotato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. Journal of Food Science, 2006, 71(2):R13-R21.
doi: 10.1111/j.1365-2621.2006.tb08912.x |
[7] |
ISLAM M S, YOSHIMOTO M, YAMAKAWA O. Distribution and physiological functions of caffeoylquinic acid derivatives in leaves of sweetpotato genotypes. Journal of Food Science, 2003, 68(1):111-116.
doi: 10.1111/jfds.2003.68.issue-1 |
[8] |
ISLAM M S, YOSHIMOTO M, YAHARA S, OKUNO S, ISHIGURO K, YAMAKAWA O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. Journal of Agricultural and Food Chemistry, 2002, 50(13):3718-3722.
doi: 10.1021/jf020120l |
[9] |
JUNG J K, LEE S U, KOZUKUE N, LEVIN C E, FRIEDMAN M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. Journal of Food Composition and Analysis, 2011, 24(1):29-37.
doi: 10.1016/j.jfca.2010.03.025 |
[10] | 赵珊, 仲伶俐, 李曦, 雷欣宇, 郑幸果, 郭灵安, 雷绍荣, 周虹, 黄世群, 冯俊彦. 超高效液相色谱测定冷冻研磨甘薯植株中酚酸及其分布(英文). 食品科学, 2021, 42(12):222-232. |
ZHAO S, ZHONG L L, LI X, LEI X Y, ZHENG X G, GUO L A, LEI S R, ZHOU H, HUANG S Q, FENG J Y. Determination of phenolic acids and their distribution in freeze-grinding sweetpotato plants by ultra-high performance liquid chromatography [J/OL]. Food Science, 2021, 42(12):222-232. | |
[11] | 郭政铭, 杨静, 周成伟, 孙月娥, 王卫东. 甘薯茎叶生理功能与其加工利用. 食品安全质量检测学报, 2019, 10(24):8302-8307. |
GUO Z M, YANG J, ZHOU C W, SUN Y E, WANG W D. Advances on physiological activities and processing utilization of sweet potato stems and leaves. Journal of Food Safety & Quality, 2019, 10(24):8302-8307. (in Chinese) | |
[12] | KORUS A. Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. Acephala) leaves. Journal of Food Science and Technology, 2021. http://doi.org/10.2007/513197-021-05012-9 . |
[13] |
GARCIA L M, CECCANTI C, NEGRO C, DE BELLIS L, INCROCCI L, PARDOSSI A, GUIDI L. Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae, 2021, 7(1):10.
doi: 10.3390/horticulturae7010010 |
[14] |
YU Q, LI J W, FAN L P. Effect of drying methods on the microstructure, bioactivity substances, and antityrosinase activity of Asparagus stems. Journal of Agricultural and Food Chemistry, 2019, 67(5):1537-1545.
doi: 10.1021/acs.jafc.8b05993 |
[15] | LEWICKI P P. Design of hot air drying for better foods. Trends in Food Science & Technology, 2006, 17(4):153-163. |
[16] | VASHISTH T, SINGH R K, PEGG R B. Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT - Food Science and Technology, 2011, 44(7):1649-1657. |
[17] |
CAPECKA E, MARECZEK A, LEJA M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 2005, 93(2):223-226.
doi: 10.1016/j.foodchem.2004.09.020 |
[18] |
CHAN E W C, LIM Y Y, WONG S K, LIM K K, TAN S P, LIANTO F S, YONG M Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 2009, 113(1):166-172.
doi: 10.1016/j.foodchem.2008.07.090 |
[19] |
HARGUINDEGUY M, FISSORE D. On the effects of freeze-drying processes on the nutritional properties of foodstuff: A review. Drying Technology, 2020, 38(7):846-868.
doi: 10.1080/07373937.2019.1599905 |
[20] |
HONEST K, ZHUOYAN H, LEI Z, MOLIN Z. Effect of steam blanching and drying on phenolic compounds of litchi pericarp. Molecules, 2016, 21(6):729.
doi: 10.3390/molecules21060729 |
[21] | PRIECINA L, KARKLINA D, KINCE T. The impact of steam- blanching and dehydration on phenolic, organic acid composition, and total carotenoids in celery roots. Innovative Food Science & Emerging Technologies, 2018, 49(5):192-201. |
[22] |
ROSLAN A S, ISMAIL A, ANDO Y, AZLAN A. Effect of drying methods and parameters on the antioxidant properties of tea (Camellia sinensis) leaves. Food Production, Processing and Nutrition, 2020, 2(1):8.
doi: 10.1186/s43014-020-00022-0 |
[23] | 司金金, 辛丹丹, 王晓芬, 寇莉萍. 干燥方式对红薯叶粉品质特性的影响. 西北农林科技大学学报(自然科学版), 2018, 46(6):129-136, 154. |
SI J J, XIN D D, WANG X F, KOU L P. Effect of drying methods on quality characteristics of sweet potato leaf powder. Journal of Northwest A &F University (Natural Science Edition), 2018, 46(6):129-136, 154. (in Chinese) | |
[24] |
宋振, 木泰华, 孙红男, 席利莎. 不同干燥方法对甘薯茎叶粉营养及功能特性的影响及其品质评价指标的筛选. 食品科技, 2014, 39(11):163-169.
doi: 10.1590/fst.29217 |
SONG Z, MU T H, SUN H N, XI L S. Effect of different drying methods on nutritional and functional properties of sweet potato leaf powder and the screening on evaluating indicators. Food Science and Technology, 2014, 39(11):163-169. (in Chinese)
doi: 10.1590/fst.29217 |
|
[25] |
JENG T L, LAI C C, LIAO T C, LIN S Y, SUNG J M. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves. Journal of Food and Drug Analysis, 2015, 23(4):701-708.
doi: 10.1016/j.jfda.2014.07.002 |
[26] |
ZHENG W, CLIFFORD M N. Profiling the chlorogenic acids of sweet potato (Ipomoea batatas) from China. Food Chemistry, 2008, 106(1):147-152.
doi: 10.1016/j.foodchem.2007.05.053 |
[27] |
FU Z F, TU Z C, ZHANG L, WANG H, WEN Q H, HUANG T. Antioxidant activities and polyphenols of sweet potato ( Ipomoea batatas L.) leaves extracted with solvents of various polarities. Food Bioscience, 2016, 15:11-18.
doi: 10.1016/j.fbio.2016.04.004 |
[28] | DO Q D, ANGKAWIJAYA A E, TRAN-NGUYEN P L, HUYNH L H, SOETAREDJO F E, ISMADJI S, JU Y H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food & Drug Analysis, 2014, 22(3):296-302. |
[29] | 赵珊, 仲伶俐, 周虹, 李曦, 雷欣宇, 黄世群, 郑幸果, 冯俊彦, 雷绍荣, 郭灵安. 超高效液相色谱-串联质谱法鉴定和分析稻米中酚酸类化合物的组成及分布. 中国农业科学, 2020, 53(3):612-631. |
ZHAO S, ZHONG L L, ZHOU H, LI X, LEI X Y, HUANG S Q, ZHENG X G, FENG J Y, LEI S R, GUO L G. Identification and analysis of phenolic acids in rice using ultra-high performance liquid chromatography-tandem mass spectrometry. Scientia Agricultura Sinica, 2020, 53(3):612-631. (in Chinese) | |
[30] |
SHARMA O P, BHAT T K. DPPH antioxidant assay revisited. Food Chemistry, 2009, 113(4):1202-1205.
doi: 10.1016/j.foodchem.2008.08.008 |
[31] | 罗牡康, 贾栩超, 张瑞芬, 刘磊, 董丽红, 池建伟, 白亚娟, 张名位. 杨桃的酚类成分含量及其生物可及性与抗氧化活性. 中国农业科学, 2020, 53(7):1459-1472. |
LUO M K, JIA X C, ZHANG R F, LIU L, DONG L H, CHI J W, BAI Y J, ZHANG M W. Phenolic content, bioavailability and antioxidant activity of carambola. Scientia Agricultura Sinica, 2020, 53(7):1459-1472. (in Chinese) | |
[32] |
SASAKI K, OKI T, KAI Y M, NISHIBA Y, OKUNO S. Effect of repeated harvesting on the content of caffeic acid and seven species of caffeoylquinic acids in sweet potato leaves. Bioscience, Biotechnology, and Biochemistry, 2015, 79(8):1308-1314.
doi: 10.1080/09168451.2015.1025032 |
[33] |
CHU Y H, CHANG C L, HSU H F. Flavonoid content of several vegetables and their antioxidant activity. Journal of the Science of Food and Agriculture, 2000, 80(5):561-566.
doi: 10.1002/(SICI)1097-0010(200004)80:5<>1.0.CO;2-Q |
[34] |
LUO C Y, WANG X X, GAO G, WANG L, LI Y X, SUN C J. Identification and quantification of free, conjugate and total phenolic compounds in leaves of 20 sweetpotato cultivars by HPLC-DAD and HPLC-ESI-MS/MS. Food Chemistry, 2013, 141(3):2697-2706.
doi: 10.1016/j.foodchem.2013.05.009 |
[35] |
HUANG Z, WANG B, EAVES D H, SHIKANY J M, PACE R D. Phenolic compound profile of selected vegetables frequently consumed by African Americans in the southeast United States. Food Chemistry, 2007, 103(4):1395-1402.
doi: 10.1016/j.foodchem.2006.10.077 |
[36] | 李云聪, 牛志平, 徐美利, 田洪, 高伟. 甜叶菊与其他植物中绿原酸类成分对比分析. 中国食品添加剂, 2021, 32(1):1-6. |
LI Y C, NIU Z P, XU M L, TIAN H, GAO W. Comparative analysis of chlorogenic acids in Stevia and other plants. China Food Additives, 2021, 32(1):1-6. (in Chinese) | |
[37] |
RUENROENGKLIN N, SUN J, SHI J, XUE S J, JIANG Y M. Role of endogenous and exogenous phenolics in litchi anthocyanin degradation caused by polyphenol oxidase. Food Chemistry, 2009, 115(4):1253-1256.
doi: 10.1016/j.foodchem.2009.01.040 |
[38] | 李晓英, 薛梅, 樊汶樵, 罗洁. 不同干燥方式对蓝莓叶中酚类物质及其抗氧化活性的影响. 中国农业科学, 2018, 51(13):2570-2578. |
LI X Y, XUE M, FAN W Q, LUO J. Analysis of phenolic compounds and antioxidant activities of blueberry leaves from different drying methods. Scientia Agricultura Sinica, 2018, 51(13):2570-2578. (in Chinese) | |
[39] | 邓媛元, 汤琴, 张瑞芬, 张雁, 刘磊, 魏振承, 马永轩, 张名位. 不同干燥方式对苦瓜营养与品质特性的影响. 中国农业科学, 2017, 50(2):362-371. |
DENG Y Y, TANG Q, ZHANG R F, ZHANG Y, LIU L, WEI Z C, MA Y X, ZHANG M W. Effects of different drying methods on the nutrition and physical properties of Momordica charantia. Scientia Agricultura Sinica, 2017, 50(2):362-371. (in Chinese) | |
[40] | MBONDO N N, OWINO W O, AMBUKO J, SILA D N. Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Science & Nutrition, 2018, 6(4):814-823. |
[41] | 胡皓, 宋红坤, 王继良, 林涛, 刘兴勇, 邵金良. 高效液相色谱法同时测定咖啡中6种绿原酸. 食品安全质量检测学报, 2018, 9(7):1634-1643. |
HU H, SONG H K, WANG J L, LIN T, LIU X Y, SHAO J L. Determination of 6 kinds of chlorogenic acid by high performance liquid chromatography. Journal of Food Safety & Quality, 2018, 9(7):1634-1643. (in Chinese) | |
[42] | 张欣. 多酚化合物抗氧化性的化学—生物学研究[D]. 哈尔滨: 东北农业大学, 2008. |
ZHANG X. Chemical and biological study on antioxidant and capacity of polyphenols[D]. Harbin: Northeast Agricultural University, 2008. (in Chinese) | |
[43] | 傅玉凡, 杨春贤, 赵亚特, 赵文婷, 刘小强, 曾令江, 廖志华, 张启堂. 不同叶菜型甘薯品种茎尖绿原酸含量及清除DPPH·能力. 中国农业科学, 2010, 43(23):4814-4822. |
FU Y F, YANG C X, ZHAO Y T, ZHAO W T, LIU X Q, ZENG L J, LIAO Z H, ZHANG Q T. Chlorogenic acid contents in shoot-tips of different vegetable-use sweetpotato varieties and their DPPH- scavenging capacities. Scientia Agricultura Sinica, 2010, 43(23):4814-4822. (in Chinese) |
[1] | 侯成立,黄彩燕,郑晓春,刘维华,杨奇,张德权. 宰后不同时间滩羊肉抗氧化活性的变化及可能机制[J]. 中国农业科学, 2021, 54(23): 5110-5124. |
[2] | 李杰,贾栩超,张瑞芬,刘磊,池建伟,黄菲,董丽红,张名位. 黑芝麻黑色素的分离纯化、结构表征及体外抗氧化活性[J]. 中国农业科学, 2020, 53(12): 2477-2492. |
[3] | 于静,张卫星,马兰婷,胥保华. 饲粮α-亚麻酸水平对意大利蜜蜂工蜂幼虫生理机能的影响[J]. 中国农业科学, 2019, 52(13): 2368-2378. |
[4] | 李晓英,薛梅,樊汶樵,罗洁. 不同干燥方式对蓝莓叶中酚类物质及其抗氧化活性的影响[J]. 中国农业科学, 2018, 51(13): 2570-2578. |
[5] | 刘羽,刘盛雨,卢娟芳,于庆帆,席万鹏. 新疆红肉苹果3个品系的风味品质与抗氧化能力评价[J]. 中国农业科学, 2017, 50(8): 1495-1504. |
[6] | 邓媛元,汤琴,张瑞芬,张雁,刘磊,魏振承,马永轩,张名位 . 不同干燥方式对苦瓜营养与品质特性的影响[J]. 中国农业科学, 2017, 50(2): 362-371. |
[7] | 李亚欢,田平平,王杰,杜冰,姚松君,孙恬,马务迢,刘伟贤. 干燥方式对银耳加工与贮藏过程中品质的影响[J]. 中国农业科学, 2016, 49(6): 1163-1172. |
[8] | 田平平,李仁宙,简永健,李健明,王杰. 核桃青皮的强抗氧化活性成分及其抗氧化稳定性[J]. 中国农业科学, 2016, 49(3): 543-553. |
[9] | 赖婷,刘磊,张名位,张瑞芬,张雁,魏振承,邓媛元. 不同乳酸菌发酵对桂圆肉中酚类物质及抗氧化活性的影响[J]. 中国农业科学, 2016, 49(10): 1979-1989. |
[10] | 陈杭君, 王翠红, 郜海燕, 毛金林, 周拥军. 不同包装方法对蓝莓采后贮藏品质和抗氧化活性的影响[J]. 中国农业科学, 2013, 46(6): 1230-1236. |
[11] | 李盛钰, 李达, 赵玉娟, 张雪, 黄丽, 赵玉鉴, 杨贞耐. 植物乳杆菌C88对H2O2诱导氧化损伤的 Caco-2细胞的保护作用[J]. 中国农业科学, 2013, 46(3): 606-613. |
[12] | 黄明, 王璐莎. 动物蛋白源抗氧化肽的研究进展[J]. 中国农业科学, 2013, 46(22): 4763-4773. |
[13] | 李青, 张名位, 张瑞芬, 魏振承, 邓媛元, 唐小俊, 张业辉, 李武, 马永轩. 5种籼稻品种谷壳中游离态和结合态酚类物质含量及其抗氧化活性比较[J]. 中国农业科学, 2012, 45(6): 1150-1158. |
[14] | . 金华火腿副产品酶解物的MRPs抗氧化活性 [J]. 中国农业科学, 2011, 44(6): 1218-1223 . |
[15] | 崔志文, 黄琴, 黄怡, 吴红照, 文静, 李卫芬. 鼠李糖乳酸杆菌对Caco-2细胞抗氧化功能的影响[J]. 中国农业科学, 2011, 44(23): 4926-4932. |
|