[1] |
SHAHINI A, VYDIAM K, CHOUDHURY D, RAJABIAN N, NGUYEN T, LEI P, ANDREADIS S T . Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Research, 2018,30:122-129.
|
[2] |
CRAMERI R M, HENNING L, PETER M, JENSEN C H, HENRIK DAA S D, OLESEN J L, CHARLOTTE S, BøRGE T, MICHAEL K . Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. Journal of Physiology, 2004,558(1):333-340.
|
[3] |
GRIFFIN C A, APPONI L H, LONG K K, PAVLATH G K . Chemokine expression and control of muscle cell migration during myogenesis. Journal of Cell Science, 2010,123(18):3052-3060.
|
[4] |
PERRUCHOT M H, ECOLAN P, SORENSEN I L, OKSBJERG N, LEFAUCHEUR L . In vitro characterization of proliferation and differentiation of pig satellite cells. Differentiation, 2012,84(4):322-329.
|
[5] |
YIN H, PRICE F, RUDNICKI M A . Satellite cells and the muscle stem cell niche. Physiological Reviews, 2013,93(1):23-67.
|
[6] |
MAURO A . Satellite cell of skeletal muscle fibers. Journal of Biophysical Biochemical Cytology, 1961,9(2):493-495.
|
[7] |
ROBERT W, ANNESOPHIE B, VIOLA G, PETER Z . Dynamics of muscle fibre growth during postnatal mouse development. Bmc Developmental Biology, 2010,10:21.
|
[8] |
FRY C S, LEE J D, MULA J, KIRBY T J, JACKSON J R, LIU F, YANG L, MENDIAS C L, DUPONTVERSTEEGDEN E E, MCCARTHY J J . Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nature Medicine, 2015,21(1):76-80.
|
[9] |
RENAULT V, ROLLAND E, THORNELL L E, MOULY V, BUTLER-BROWNE G . Distribution of satellite cells in the human vastus lateralis muscle during aging. Experimental Gerontology, 2002,37(12):1513-1514.
|
[10] |
DAY K, PATERSON B, YABLONKA-REUVENI Z . A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Developmental Dynamics An Official Publication of the American Association of Anatomists, 2009,238(4):1001-1009.
|
[11] |
JULIA V M, JONES A E, PARKS R J, RUDNICKI M A . Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(41):16474-16479.
|
[12] |
MORESI V, MARRONCELLI N, ADAMO S . New insights into the epigenetic control of satellite cells. World Journal of Stem Cells, 2015,7(6):945-955.
|
[13] |
CORNELISON D D W, OLWIN B B, RUDNICKI M A, WOLD B J . MyoD-/-Satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Developmental Biology, 2000,224(2):122-137.
|
[14] |
TAKEGAHARA Y, YAMANOUCHI K, NAKAMURA K, NAKANO S-i, NISHIHARA M . Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner. Experimental Cell Research, 324(1):105-114.
|
[15] |
YAMANOUCHI K, HOSOYAMA T, MURAKAMI Y, NAKANO S, NISHIHARA M . Satellite cell differentiation in goat skeletal muscle single fiber culture. Journal of Reproduction and Development, 2009,55(3):252-255.
|
[16] |
MONTOYA-FLORES D, MORA O, TAMARIZ E, GONZ LEZ-D VALOS L, GONZ LEZ-GALLARDO A, ANTARAMIAN A, SHIMADA A, VARELA-ECHAVARR A A, ROMANO-MUNOZ J L . Ghrelin stimulates myogenic differentiation in a mouse muscle satellite cell line and in primary cultures of bovine myoblasts. Journal of Animal Physiology & Animal Nutrition, 2012,96(4):725-738.
|
[17] |
DOUMIT M E, MERKEL R A . Conditions for isolation and culture of porcine myogenic satellite cells. Tissue & Cell, 1992,24(2):253-262.
|
[18] |
JIE-MIN D, MU-XUE Y, ZHEN-YU S, CHU-YI G, SI-QI Z, XIAO-SHAN Q . Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mTORC1 signaling pathway. Nutrients, 2015,7(5):3387-3400.
|
[19] |
MUSAR A . Isolation and culture of mouse satellite cells. Methods Molecular Biology, 2010,633(633):101-111.
|
[20] |
JEEVA S, SIRISHA C, JYOTSNA D, DAA S d H, MAURILIO S . A Novel in vitro model for studying quiescence and activation of primary isolated human myoblasts. PLoS One, 2013,8(5):e64067.
|
[21] |
MIERSCH C, STANGE K, R NTGEN M . Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous Percoll density gradient centrifugation. Bmc Cell Biology, 2018,19(1):2.
|
[22] |
PALLAFACCHINA G, FRAN OIS S, REGNAULT B, CZARNY B, DIVE V, CUMANO A, MONTARRAS D, BUCKINGHAM M . An adult tissue-specific stem cell in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Research, 2010,4(2):77-91.
|
[23] |
MOTOHASHI N, ASAKURA Y, ASAKURA A . Isolation, culture, and transplantation of muscle satellite cells. Journal of Visualized Experiments Jove, 2014,86(86):e50846-e50846.
|
[24] |
CASTIGLIONI A, HETTMER S, LYNES M, RAO T N, TCHESSALOVA D, SINHA I, LEE B, TSENG Y H, WAGERS A . Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. Stem Cell Reports, 2014,2(1):92-106.
|
[25] |
薛科, 王林杰, 陈利, 王薏琳, 仲涛, 李利, 张红平 . 高糖诱导山羊骨骼肌卫星细胞成脂分化过程中相关基因表达的变化. 畜牧兽医学报, 2014,45(5):706-713.
|
|
XUE K, WANG L J, CHEN L, WANG Y L, ZHONG T, LI L, ZHANG H P . Adipogenic-related gene expressions in goat skeletal muscle satellite cells treated with high concentration glucose. Acta Veterinaria et Zootechnica Sinica, 2014,45(5):706-713. (in Chinese)
|
[26] |
DIDIER M, JENNIFER M, CHARLOTTE C, FR D RIC R, ST PHANE Z, ANA C, TERENCE P, MARGARET B . Direct isolation of satellite cells for skeletal muscle regeneration. Science, 2005,309(5743):2064-2067.
|
[27] |
LI Y, YANG X, NI Y, DECUYPERE E, BUYSE J, EVERAERT N, GROSSMANN R, ZHAO R . Early-age feed restriction affects viability and gene expression of satellite cells isolated from the gastrocnemius muscle of broiler chicks. Journal of Animal Science and Biotechnology, 2012,3(1):33.
|
[28] |
CHOI S H, CHUNG K Y, JOHNSON B J, GO G W, KIM K H, CHANG W, CHOI , SMITH S B . Co-culture of bovine muscle satellite cells with preadipocytes increases PPARγ and C/EBPβ gene expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. Journal of Nutritional Biochemistry, 2013,24(3):539-543.
|
[29] |
WU H, REN Y, LI S, WANG W, YUAN J, GUO X, LIU D, CANG M . In vitro culture and induced differentiation of sheep skeletal muscle satellite cells. Cell Biology International, 2013,36(6):579-587.
|
[30] |
RELAIX F, ZAMMIT P S . Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development, 2012,139(16):2845-2856.
|
[31] |
BRUN C E, YU X W, RUDNICKI M A . Single EDL myofiber isolation for analyses of quiescent and activated muscle stem cells. Cellular Quiescence, 2018,1686:149-159.
|
[32] |
SEALE P, RUDNICKI M A . A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Developmental Biology, 2000,218(2):115-124.
|
[33] |
YANG J, LIU H, WANG K, LI L, YUAN H, LIU X, LIU Y, GUAN W . Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells. Cell & Tissue Banking, 2017,18(4):1-13.
|
[34] |
睢梦华, 郑琪, 吴昊, 丁建平, 刘勇, 李文雍, 储明星, 张子军, 凌英会 . 山羊胎儿肌肉干细胞的分离培养与成肌诱导分化. 中国农业科学, 2018,51(8):1590-1597.
|
|
SUI M H, ZHENG Q, WU H, DING J P, LIU Y, LI W Y, CHU M X, ZHANG Z J, LING Y H . Isolation, Culture and Myogenic Differentiation of Muscle Stem Cells in Goat Fetal. Scientia Agricultura Sinica, 2018,51(8):1590-1597. (in Chinese)
|
[35] |
BAQUERO-PEREZ B . A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. Bmc Cell Biology, 2012,13(1):16.
|
[36] |
MIERSCH C, STANGE K, R NTGEN M . Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles. In Vitro Cellular & Developmental Biology - Animal, 2018,54(6):406-412.
|
[37] |
AGLEY C C, ROWLERSON A M, VELLOSO C P, LAZARUS N L, HARRIDGE S D . Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. Journal of Visualized Experiments, 2015,95:52049.
|
[38] |
DICK S A, CHANG N C, DUMONT N A, BELL R A V, CHARIS P, YOICHI K, LITCHFIELD D W, RUDNICKI M A, MEGENEY L A . Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(38):5246-5252.
|
[39] |
FENG X, NAZ F, JUAN A H DELL'ORSO S SARTORELLI V . Identification of skeletal muscle satellite cells by immunofluorescence with Pax7 and laminin antibodies. Journal of Visualized Experiments, 2018,134:57212.
|
[40] |
STARKEY J D, MASAKAZU Y, SHOKO Y, GOLDHAMER D J . Skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt nonmyogenic fates. Journal of Histochemistry & Cytochemistry Official Journal of the Histochemistry Society, 2011,59(1):33-46.
|
[41] |
李方华, 侯玲玲, 马月辉, 庞全海, 关伟军 . 北京油鸡骨骼肌卫星细胞的分离、培养、鉴定及成肌诱导分化的研究. 中国农业科学, 2010,43(22):4725-4731 .
|
|
LI F H, HOU L L, MA Y H, PANG Q H, GUAN W J . Isolation, culture, identification and muscle differentiation of skeletal muscle satellite cells in Beijing Fatty Chicken. Scientia Agricultura Sinica, 2010,43(22):4725-4731 . (in Chinese)
|
[42] |
ASAKURA A, RUDNICKI M A, KOMAKI M . Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation , 68(4-5):245-253.
|
[43] |
RUIZ-OJEDA F J, RUP REZ A I, GOMEZ-LLORENTE C, GIL A, AGUILERA C M . Cell models and their application for studying adipogenic differentiation in relation to obesity: a review. International Journal of Molecular Sciences, 2016,17(7):1040.
|
[44] |
FISCHER C, SEKI T, LIM S, NAKAMURA M, ANDERSSON P, YANG Y, HONEK J, WANG Y, GAO Y, CHEN F, SAMANI N J, ZHANG J, MIYAKE M, OYADOMARI S, YASUE A, LI X, ZHANG Y, LIU Y, CAO Y . A miR-327-FGF10-FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nature Communications, 2017,8(1):2079.
|
[45] |
MANIATOPOULOS C, SODEK J, MELCHER A H . Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell & Tissue Research, 1988,254(2):317-330.
|
[46] |
LEE K-M, PARK K H, HWANG J S, LEE M, YOON D S, RYU H A, JUNG H S, PARK K W, KIM J, PARK S W, KIM S-H, CHUN Y-M, CHOI W J, LEE J W . Inhibition of STAT5A promotes osteogenesis by DLX5 regulation. Cell Death & Disease, 2018,9(11):1136.
|
[47] |
YU R, WU H, ZHOU X, WEN J, JIN M, MING C, GUO X, WANG Q, LIU D, MA Y . Isolation, expansion, and differentiation of goat adipose-derived stem cells. Research in Veterinary Science, 2012,93(1):404-411.
|
[48] |
REZA R, SEYED MAHDI N, PARVANEH K, ABDOL-MOHAMMAD K, SEYED HOSSEIN A, ELHAM M, MOHAMMAD M, MOHAMAD Z A . Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells & Development, 2012,22(6):855-865.
|