中国农业科学 ›› 2022, Vol. 55 ›› Issue (20): 3897-3909.doi: 10.3864/j.issn.0578-1752.2022.20.003
琚铭(),苗红梅,黄盈盈,马琴,王慧丽,王翠英,段迎辉,韩秀花,张海洋()
收稿日期:
2022-05-29
接受日期:
2022-07-18
出版日期:
2022-10-16
发布日期:
2022-10-24
通讯作者:
张海洋
作者简介:
琚铭,E-mail: 基金资助:
JU Ming(),MIAO HongMei,HUANG YingYing,MA Qin,WANG HuiLi,WANG CuiYing,DUAN YingHui,HAN XiuHua,ZHANG HaiYang()
Received:
2022-05-29
Accepted:
2022-07-18
Online:
2022-10-16
Published:
2022-10-24
Contact:
HaiYang ZHANG
摘要:
【目的】 探索芝麻不同种之间的杂交亲和性,分析其杂种的生物学特征,为芝麻野生种种质资源高效利用提供依据。【方法】 以芝麻栽培种豫芝11号(S. indicum,2n=26)和S. latifolium(2n=32)、S. calycinum(2n=32)、S. angustifolium(2n=32)、S. radiatum(2n=64)等4个野生种为亲本材料,采用双列杂交方法,通过田间人工授粉配置不同种间组合;结合胚拯救方法获得种间杂种F1。根据杂交结蒴率比较组合杂交亲和性;在盛花期和成熟期观察杂种植物学性状特征,利用Alexander染色法进行花粉粒育性鉴定。通过根尖细胞染色体涂片明确杂种染色体数目及特征。选用自主筛选的胡麻属特异多态性SSR引物,分析种间杂种分子标记差异。【结果】 配置了5个芝麻种间的20个正、反交组合,共授粉2 091朵花,获得杂交蒴果370个。发现以染色体数目多的种为母本更易获得远缘杂交蒴果。5个芝麻种之间杂交亲和性的变化范围为1.18%(S. radiatum×S. calycinum)—63.33%(S. calycinum×S. angustifolium)。共有9个杂交组合获得杂种F1种子,F1植株的花粉败育率为35.21%—100.00%,其中,S. calycinum与S. angustifolium杂交组合F1的可育株比例最高,为87.68%。杂种F1在株高、株型等性状方面均表现出明显的超亲优势。栽培种与各野生种的正反交杂种F1在叶型、花型和花色表现出双亲的局部特征。栽培种芝麻(n=13)与具有n=16染色体组型的3个野生种的杂交亲和性依次为S. angustifolium>S. calycinum>S. latifolium;野生种S. radiatum(n=32)与n=16染色体组的3个野生种的亲和性依次为S. calycinum>S. angustifolium>S. latifolium。在5个种中,野生种S. calycinum与S. angustifolium的亲缘关系相对最近。获得的部分杂种植株根尖细胞染色体数目观察显示,杂种的染色体数目与理论值一致。利用3对多态性SSR引物对F1植株的分子鉴定结果显示,真杂种比例为99.66%。杂种染色体核型和特异SSR标记结果显示出胡麻属不同种的遗传特征差异。【结论】 胡麻属5个种之间的杂交亲和性差异显著,种间杂交后代杂种优势明显;S. calycinum与S. angustifolium的亲缘关系相对最近,可用于芝麻优异种质创制和远缘杂交育种研究;其他种间杂交存在着生殖隔离障碍,可采用胚拯救、分子标记利用等手段加强芝麻野生资源利用。
琚铭, 苗红梅, 黄盈盈, 马琴, 王慧丽, 王翠英, 段迎辉, 韩秀花, 张海洋. 芝麻种间杂交亲和性差异及杂种生物学特征分析[J]. 中国农业科学, 2022, 55(20): 3897-3909.
JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies[J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
表1
芝麻远缘杂交用亲本信息"
材料名称 Material name | 种属特性 Sesamum species | 体细胞染色体数目 Chromosome number in somatic cell | 株型 Plant type |
---|---|---|---|
豫芝11号Yuzhi 11 | S. indicum | 2n=26 | 直立、单秆 Erect, uniculm |
Ken1 | S. latifolium | 2n=32 | 直立、分支 Erect, branching |
Ken8 | S. calycinum | 2n=32 | 半匍匐、分支 Semi-erect, branching |
G01 | S. angustifolium | 2n=32 | 直立、分支 Erect, branching |
G02 | S. radiatum | 2n=64 | 直立、分支 Erect, branching |
表3
种间杂交组合结实性和杂种胚拯救出苗率统计"
编号 No. | 种间杂交组合 Interspecific hybrid combination | 母本 Female (♀) | 父本 Male (♂) | 杂交结实性 Hybrid capsule formation | 胚拯救 Hybrid embryo rescue | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
授粉花朵数 Pollinated flower <BOLD>N</BOLD>o. | 结蒴数量 Capsule <BOLD>N</BOLD>o. | 杂交结蒴率 Capsule ratio (%) | 种子数量 Hybrid seed <BOLD>N</BOLD>o. | 杂种出苗数 Hybrid seedlings <BOLD>N</BOLD>o. | 杂种出苗率 Hybrid plantlet ratio (%) | 幼胚数量 Young embryo <BOLD>N</BOLD>o. | 组培苗数量 Seedling <BOLD>N</BOLD>o. | 成苗率 Seedling ratio (%) | ||||
H1a | S. indicum×S. latifolium | 豫芝11号 Yuzhi 11 | Ken1 | 60 | 9 | 15.00 | 56 | 0 | 0 | 105 | 24 | 22.86 |
H1b | S. latifolium×S. indicum | Ken1 | 豫芝11号 Yuzhi 11 | 70 | 11 | 15.71 | 255 | 0 | 0 | 266 | 186 | 69.92 |
H2a | S. indicum×S. calycinum | 豫芝11号 Yuzhi 11 | Ken8 | 110 | 20 | 18.18 | 150 | 0 | 0 | 156 | 2 | 1.28 |
H2b | S. calycinum×S. indicum | Ken8 | 豫芝11号 Yuzhi 11 | 90 | 3 | 3.33 | 47 | 1 | 2.13 | 375 | 87 | 23.00 |
H3a | S. indicum×S. angustifolium | 豫芝11号 Yuzhi 11 | G01 | 40 | 9 | 22.50 | 156 | 0 | 0 | 75 | 1 | 1.30 |
H3b | S. angustifolium×S. indicum | G01 | 豫芝11号 Yuzhi 11 | 320 | 15 | 4.69 | 210 | 1 | 0.48 | 112 | 5 | 4.46 |
H4a | S. indicum×S. radiatum | 豫芝11号 Yuzhi 11 | G02 | 249 | 82 | 32.93 | 57 | 0 | 0 | 225 | 16 | 7.11 |
H4b | S. radiatum×S. indicum | G02 | 豫芝11号 Yuzhi 11 | 253 | 104 | 41.11 | 78 | 2 | 2.56 | 350 | 51 | 14.57 |
H5a | S. latifolium×S. calycinum | Ken1 | Ken8 | 30 | 3 | 10.00 | 78 | 0 | 0 | 130 | 0 | 0 |
H5b | S. calycinum×S. latifolium | Ken8 | Ken1 | 102 | 8 | 7.84 | 137 | 0 | 0 | 85 | 3 | 3.52 |
H6a | S. angustifolium×S. latifolium | G01 | Ken1 | 45 | 5 | 11.11 | 50 | 0 | 0 | 75 | 8 | 11.11 |
H6b | S. latifolium×S. angustifolium | Ken1 | G01 | 51 | 15 | 29.41 | 236 | 3 | 1.27 | 50 | 1 | 2.00 |
H7a | S. latifolium×S. radiatum | Ken1 | G02 | 57 | 6 | 10.53 | 55 | 0 | 0 | 440 | 5 | 1.14 |
H7b | S. radiatum×S. latifolium | G02 | Ken1 | 64 | 10 | 15.63 | 200 | 0 | 0 | 300 | 2 | 0.60 |
H8a | S.calycinum×S. angustifolium | Ken8 | G01 | 30 | 19 | 63.33 | 285 | 44 | 15.44 | 105 | 98 | 93.00 |
H8b | S.angustifolium×S. calycinum | G01 | Ken8 | 25 | 12 | 48.00 | 105 | 26 | 24.75 | 150 | 66 | 44.00 |
H9a | S. calycinum×S. radiatum | Ken8 | G02 | 56 | 2 | 3.57 | 12 | 0 | 0 | 125 | 0 | 0 |
H9b | S. radiatum×S. calycinum | G02 | Ken8 | 255 | 3 | 1.18 | 20 | 0 | 0 | 120 | 33 | 27.50 |
H10a | S. angustifolium×S. radiatum | G01 | G02 | 99 | 5 | 5.05 | 55 | 0 | 0 | 0 | 0 | 0 |
H10b | S. radiatum×S. angustifolium | G02 | G01 | 85 | 29 | 34.12 | 909 | 0 | 0 | 280 | 22 | 7.86 |
表4
芝麻不同种及种间杂交F1植株的生物学特征统计"
材料名称 Name | 来源 Source | 叶型 Leaf type | 株高 Plant height (cm) | 株型 Plant type | 蜜腺 Honey gland | 腋叶花数 flower no. per axillar | 花长 Corolla length (cm) | 花宽 Corolla width (cm) | 花冠颜色 Corolla color | 花舌颜色 Corolla tip color | 花粉败育率 Pollen grain fertility (%) | 自交结蒴性 Self- pollination capsule formation | 有无成熟 种胚 Embryo in mature seed | 种皮颜色 Seed color |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
豫芝11号 Yuzhi 11 | S. indicum | 椭圆形 Oval | 169.2 | 直立、单秆 Erect, uniculm | 无 Without | 3 | 3.7 | 2.4 | 白色 White | 白色 White | 0 | 是 Yes | 有 Have | 白色 White |
Ken1 | S. latifolium | 心形 Heart-shaped | 230.5 | 直立、强分支 Erect, Many branches | 黄色 Yellow | 1 | 4.5 | 2.4 | 淡紫色 Lavender | 紫条 Purple strip | 2.22 | 是 Yes | 有 Have | 黑色 Black |
Ken8 | S. calycinum | 条形 Strip type | 151.6 | 半匍匐、强分支 Semi-erect, many branches | 黄色 Yellow | 1 | 3.9 | 2.0 | 紫色 Purple | 淡紫色 Lavender | 0 | 是 Yes | 有 Have | 黑色 Black |
G01 | S. angustifolium | 条形 Strip type | 122.6 | 直立、弱分支 Erect, few branches | 黄色 Yellow | 1 | 3.7 | 2.0 | 紫红色 Mauve | 紫红色 Mauve | 1.05 | 是 Yes | 有 Have | 黑色 Black |
G02 | S. radiatum | 披针形 lanceolate | 179.6 | 直立、弱分支 Erect, few branches | 紫色 Purple | 1 | 4.2 | 2.4 | 白色 White | 白色 White | 4.28 | 是 Yes | 有 Have | 黑色 Black |
H1a | S. indicum× S. latifolium | 条形 Strip type | 240.2 | 直立、强分支 Erect, strong branch | 黄色 Yellow | 1 | 5.0 | 3.0 | 淡紫色 Lavender | 粉色条纹 Pink stripes | 100.00 | 是 Yes | 无 No | 黑色 Black |
H1b | S. latifolium× S. indicum | 条形 Strip type | 251.7 | 直立、强分支 Erect, strong branch | 黄色 Yellow | 1 | 4.5 | 2.5 | 淡紫色 Lavender | 紫色条纹 Purple stripes | 100.00 | 是 Yes | 无 No | 黑色 Black |
H2b | S. calycinum× S. indicum | 条形 Strip type | 171.5 | 半匍匐、强分支 Semi-erect, many branches | 黄色 Yellow | 1 | 4.0 | 2.6 | 紫色 Purple | 紫色条纹 Purple stripes | 97.78 | 否 No | / | / |
H4b | S. radiatum× S. indicum | 披针形 lanceolate | 186.9 | 直立、强分支 Erect, strong branch | 紫色 Purple | 1 | 4.1 | 2.2 | 粉色 Pink | 白色 White | 100.00 | 是 Yes | 无 No | 黑色 Black |
H5a | S. latifolium× S. angustifolium | 卵圆形 Ovate | 191.4 | 直立、弱分支 Erect, few branches | 黄色 Yellow | 1 | 4.2 | 2.1 | 粉色 Pink | 粉色有紫色纹路 Pink with purple texture | 100.00 | 否 No | / | / |
H7a | S. calycinum× S. angustifolium | 条形 Strip type | 170.1 | 半匍匐、强分支 Semi-erect, many branches | 紫色 Purple | 1 | 4.0 | 2.5 | 紫色 Purple | 紫色 Purple | 68.89 | 否 No | 有 Have | 黑色 Black |
H7b | S. angustifolium× S. calycinum | 条形 Strip type | 169.4 | 半匍匐、强分支 Semi-erect, many branches | 紫色 Purple | 1 | 4.0 | 2.5 | 紫色 Purple | 紫色 Purple | 35.21 | 否 No | 有 Have | 黑色 Black |
H8b | S. radiatum× S. calycinum | 披针形 Lanceolate | 199.8 | 半匍匐、强分支 Semi-erect, many branches | 紫色 Purple | 1 | 4.5 | 2.5 | 紫色 Purple | 紫色条纹 Purple stripes | 100.00 | 否 No | / | / |
H9b | S. radiatum× S. angustifolium | 柳叶型 Willow leaf shape | 200.3 | 直立、弱分支 Erect, few branches | 深紫色 Modena | 1 | 4.0 | 2.2 | 紫色 Purple | 白色有紫色边缘 White with purple edges | 100.00 | 否 No | / | / |
表5
芝麻不同种杂交后代SSR分子标记鉴定统计"
编号 No. | 种间杂交 Interspecific hybridization combination (♀×♂) | 母本 Female (♀) | 父本 Male (♂) | 标记 SSR maker | F1植株数 F1 plant number | 真杂种比例 Hybrid ratio (%) |
---|---|---|---|---|---|---|
H1a | S. indicum×S. latifolium | 豫芝11号Yuzhi 11 | Ken1 | HS352 | 24 | 100.00 |
H1b | S. latifolium×S. indicum | Ken1 | 豫芝11号Yuzhi 11 | HS352 | 186 | 98.92 |
H2b | S. calycinum×S. indicum | Ken8 | 豫芝11号Yuzhi 11 | HS352 | 87 | 100.00 |
H5a | S. latifolium×S. angustifolium | Ken1 | G01 | HS53 | 1 | 100.00 |
H7a | S. calycinum×S. angustifolium | Ken8 | G01 | HS94 | 142 | 100.00 |
H7b | S. angustifolium×S. calycinum | G01 | Ken8 | HS94 | 92 | 100.00 |
H8b | S. radiatum×S. calycinum | G02 | Ken8 | HS94 | 33 | 100.00 |
H9b | S. radiatum×S. angustifolium | G02 | G01 | HS94 | 22 | 100.00 |
[1] | ASHRI A. Sesame breeding. Plant Breeding Reviews, 1998, 16: 179-228. |
[2] | AMOO S O, OKOROGBONA A O M, DU PLOOY C P, VENTER S L. Sesamum indicum//VICTOR K. Medicinal Spices and Vegetables from Africa. Salt Lake City, USA: Academic Press, 2017: 549-579. |
[3] | ZHANG H, WANG L, MIAO H, SUN Y. Genome sequencing of the wild Sesamum species //MIAO H, ZHANG H, KOLE C. The Sesame Genome. Compendium of Plant Genomes. Cham, Switzerland: Springer, 2021: 275-281. |
[4] | MIAO H M, LANGHAM D R, ZHANG H Y. Botanical descriptions of sesame //MIAO H M, ZHANG H Y, KOLE C. The Sesame Genome. Cham, Switzerland: Springer, 2021: 19-57. |
[5] | PHAM T D. Analyses of genetic diversity and desirable traits in sesame (Sesamum indicum L. Pedaliaceae): Implication for breeding and conservation. Superlattices & Microstructures, 2011, 36(4/6): 563-571. |
[6] |
张海洋, 苗红梅, 李春, 魏利斌, 马琴. 芝麻染色体核型及似近系数分析. 植物学报, 2012, 47(6): 602-614.
doi: 10.3724/SP.J.1259.2012.00602 |
ZHANG H Y, MIAO H M, LI C, WEI L B, MA Q. Analysis of sesame karyotype and resemblance-near coefficient. Chinese Bulletin of Botany, 2012, 47(6): 602-614. (in Chinese)
doi: 10.3724/SP.J.1259.2012.00602 |
|
[7] |
ZHAO R H, MIAO H M, SONG W Q, CHEN C B, ZHANG H Y. Identification of sesame (Sesamum indicum L.) chromosomes using the BAC-FISH system. Plant Biology, 2018, 20: 85-92.
doi: 10.1111/plb.12647 |
[8] | 苗红梅, 常淑娴, 张海洋, 黄进勇, 段迎辉. 芝麻营养生长期枯萎病抗性鉴定技术研究. 植物遗传资源学报, 2020, 21(2): 330-337. |
MIAO H M, CHANG S X, ZHANG H Y, HUANG J Y, DUAN Y H. An evaluation technique of sesame resistance to Fusarium Wilt disease at vegetative stage. Journal of Plant Genetic Resources, 2020, 21(2): 330-337. (in Chinese) | |
[9] | ZHANG H Y, MIAO H M, JU M. Potential for adaptation to climate change through genomic breeding in sesame //KOLE C. Genomic Designing of Climate-Smart Oilseed Crops. Cham, Switzerland: Springer, 2019: 374-376. |
[10] | PHAM T D, NGUYEN T T, CARLSSON A S, BUI T M. Morphological evaluation of sesame (Sesamum indicum L.) varieties from different origins. Australian Journal of Crop Science, 2010, 4(7): 498-504. |
[11] |
ZHANG H Y, MIAO H M, WANG L, QU L B, LIU H, WANG Q. Genome sequencing of the important oilseed crop Sesamum indicum L.. Genome Biology, 2013, 14(1): 401-409.
doi: 10.1186/gb-2013-14-1-401 |
[12] | HIREMATH S C, PATIL C G. Genome homology and the putative progenitor of sesame. Journal of Cytology and Genetics, 1999, 34: 69-74. |
[13] | NIMMAKAYALA P, PERUMAL R, MULPURI S, REDDY U K. Sesamum//KOLE C. Wild Crop Relatives: Genomic and Breeding Resources, Vol Oilseeds. Heidelberg, Berlin: Springer, 2011: 261-273. |
[14] | ASHRI A. Sesame (Sesamum indicum L.) //SINGH R J. Genetic Resources Chromosome Engineering, and Crop Improvement, Oilseed Crops. Boca Raton, US: CRC Press, 2007: 231-289. |
[15] | 张海洋, 苗红梅, 张体德, 魏利斌, 李春, 王慧丽, 段迎辉, 琚铭. 芝麻栽培种与野生种(Sesamum schinzianum Asch, Sesemum radiatum Schum & Thonn)种间杂交后代的生物学特性. 中国农业科学, 2013, 46(19): 3965-3977. |
ZHANG H Y, MIAO H M, ZHANG T D, WEI L B, LI C, WANG H L, DUAN Y H, JU M. Biological characters of interspecific hybrid progenies between Sesamum indicum L. and wild relatives (Sesamum schinzianum Asch, Sesemum radiatum Schum & Thonn). Scientia Agricultura Sinica, 2013, 46(19): 3965-3977. (in Chinese) | |
[16] | KOBAYASHI T. Cytogenetics of Sesame (Sesamum indicum)// TSUCHIYA T, GUPTA P K. Developments in Plant Genetics and Breeding. 1991, 2(B): 581-592. |
[17] | KUMAR A K. Studies on karyoptype, genome size and genome relations in some species of Sesamum L. (Pedaliaceae)[D]. Dharwar, India: Karnataka University, 2003. |
[18] | JOSHI A B. Sesamum//JOSHI A B. Sesamum, Hyderabad, India: Indian Central Oilseed Committee Hyderabad, 1961: 9-10. |
[19] | 杨敏敏, 刘红艳, 周婷, 瞿洪浩, 杨远霄, 魏鑫, 左阳, 赵应忠. 芝麻栽培种与野生种(Sesamum indicatum)杂种F1的获得及特性鉴定. 中国农业科学, 2017, 50(10): 1763-1771. |
YANG M M, LIU H Y, ZHOU T, QU H H, YANG Y X, WEI X, ZUO Y, ZHAO Y Z. Production and identification of F1 interspecific hybrid between Sesamum indicum and wild relative S. indicatum. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771. (in Chinese) | |
[20] |
MEHRA N. Sesame: Its uses, botany, cytogenetics, and origin. Economic Botany, 1970, 24(1): 20-31.
doi: 10.1007/BF02860629 |
[21] | BEDIGIAN D. Cultivated sesame, and wild relatives in the genus Sesamum L.//BEDIGIAN D. Sesame:the genus Sesamum. Medicinal and Aromatic Plants - Industrial Profiles series, Boca Raton, US: CRC Press. 2010: 33-77. |
[22] | TARIHAL R, SRIDEVI O, SHENOY V V, SALIMATH P M. Study of fertilization barriers in crosses between Sesamum indicum and its wild relatives. Indian Journal of Genetics and Plant Breeding, 2003, 63(2): 132-136. |
[23] |
KUMARI B M, GANESAMURTHY K. Study of reproductive compatibility and morphological characterization of interspecific hybrids in Sesamum sp. African Journal of Agricultural Research, 2015, 10(9): 911-918.
doi: 10.5897/AJAR2014.8592 |
[24] |
RAJESWARI S, THIRUVENGADAM V, RAMASWAMY N M. Production of interspecific hybrids between sesamum alatum thonn and sesamum indicum L. through ovule culture and screening for phyllody disease resistance. South African Journal of Botany, 2010, 76(2): 252-258.
doi: 10.1016/j.sajb.2009.11.003 |
[25] | 赵瑞红, 苗红梅, 马琴, 陈成彬, 宋文芹, 张海洋. 芝麻野生种Sesamum alatum与栽培种Sesamum indicum核型比较分析. 南开大学学报(自然科学版), 2018, 51(5): 27-36. |
ZHAO R H, MIAO H M, MA Q, CHEN C B, SONG W Q, ZHANG H Y. Karyotype comparison analysis of the wild species Sesamum alatum and the cultivated Sesame. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 2018, 51(5): 27-36. (in Chinese) | |
[26] | CARLSSON A S, CHANANA N P, GUDU S, SUH M C, WERE B A. Sesame//KOLE C, HALL T C. Compendium of Transgenic Crop Plant-Transgenic Oilseed Crops. Texas, USA: Wiley Blackwell, 2008: 227-246. |
[27] | ZHANG H Y, LANGHAM D R, ZAHO Y Z, KHALAFALLA A, MIAO H M. Traditional breeding in sesame. //MIAO H M, ZHANG H Y, KOLE C. The Sesame Genome. Cham, Switzerland: Springer, 2021: 145-158. |
[28] | 石淑稳. 芝麻野生种与栽培种的交配能力. 中国油料, 1993, 2: 18-21. |
SHI S W. Cross compability between wild and cultivated sesame. China Oil, 1993, 2: 18-21. (in Chinese) | |
[29] |
苗红梅, 琚铭, 魏利斌, 马琴, 张海洋. 芝麻愈伤组织诱导与植株再生体系的建立. 植物学报, 2012, 47(2): 162-170.
doi: 10.3724/SP.J.1259.2012.00162 |
MIAO H M, JU M, WEI L B, MA Q, ZHANG H Y. Establishment of sesame callus induction and shoot regeneration system. Bulletin of Botany, 2012, 47(2): 162-170. (in Chinese)
doi: 10.3724/SP.J.1259.2012.00162 |
|
[30] | PETERSON R, SLOVIN J P, CHEN C. A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology, 2010, 1(2): 66-69. |
[31] |
WEI L B, MIAO H M, XU F F, KONG J J, ZHANG H Y. Chinese sesame cultivars, DNA fingerprinting, and two-dimensional barcodes using SNP, InDel, and SSR markers. Crop Science, 2017, 57: 1-7.
doi: 10.2135/cropsci2015.07.0415 |
[32] | SUDHAKER D, SREERANGASAMY S R, 梁根庆. 芝麻种胚培养. 中国油料作物学报, 1990(3): 102. |
SUDHAKER D, SREERANGASAMY S R, LIANG G Q. Cultivation of sesame embry. Chinese Journal of Oil Crops, 1990(3): 102. (in Chinese) | |
[33] | 瞿桢. 芝麻远缘杂种胚胎的营救和植株再生. 中国油料, 1994(1): 33-35. |
QU Z. Embryo rescue and plant regeneration of distant hybrid in sesame. China Oil, 1994(1): 33-35. (in Chinese) | |
[34] | 刘红艳, 赵应忠. 芝麻栽培种与野生种种间杂交亲和性研究. 中国农学通报, 2011, 27(9): 156-159. |
LIU H Y, ZHAO Y Z. Studies on the hybridization compatibility between cultivated sesame and its wild species. Chinese Agricultural Science Bulletin, 2011, 27(9): 156-159. (in Chinese) | |
[35] | MIAO H M, JU M, WANG H L, ZHANG H. Tissue culture and genetic transformation in sesame //MIAO H, ZHANG H, KOLE C. The Sesame Genome. Cham, Switzerland: Springer, 2021: 131-144. |
[1] | 钟艳平,师立松,周瑢,高媛,何延庆,方圣,张秀荣,王林海,吴自明,张艳欣. 芝麻素高效提取检测技术的建立与高芝麻素种质的筛选[J]. 中国农业科学, 2022, 55(11): 2109-2120. |
[2] | 崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(1): 219-232. |
[3] | 毕秋艳,党志红,朱伟旗,高占林,韩秀英,赵建江,王文桥,路粉,吴杰. 河北省大豆主要病原真菌鉴定及防治药剂筛选[J]. 中国农业科学, 2021, 54(1): 71-85. |
[4] | 刘爱丽,魏梦园,黎冬华,周瑢,张秀荣,游均. 芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析[J]. 中国农业科学, 2020, 53(17): 3432-3442. |
[5] | 李杰,贾栩超,张瑞芬,刘磊,池建伟,黄菲,董丽红,张名位. 黑芝麻黑色素的分离纯化、结构表征及体外抗氧化活性[J]. 中国农业科学, 2020, 53(12): 2477-2492. |
[6] | 孙建,颜小文,乐美旺,饶月亮,颜廷献,叶艳英,周红英. 芝麻不同抗旱基因型对花期干旱胁迫的生理响应机理[J]. 中国农业科学, 2019, 52(7): 1215-1226. |
[7] | 师立松,高媛,黎冬华,杨文娟,周瑢,张秀荣,张艳欣. 芝麻抗裂蒴性鉴定方法研究及核心种质抗裂蒴性评价[J]. 中国农业科学, 2019, 52(20): 3520-3532. |
[8] | 周瑢,刘盼,黎冬华,张艳欣,王林海,张秀荣,魏鑫. 芝麻硬脂酸脱饱和酶基因SiSAD的克隆及功能验证[J]. 中国农业科学, 2019, 52(10): 1678-1685. |
[9] | 韩亚飞,汪学德,郑永战,梅鸿献,魏安池,刘艳阳. 豫芝11号种子发育过程中蛋白质及其组分的变化规律[J]. 中国农业科学, 2018, 51(4): 652-661. |
[10] | 甄浩洋, 彭焕, 孔令安, 洪豹元, 朱桂兰, 汪锐辉, 彭德良, 文艳华. 中国孢囊线虫新记录种——野生豆孢囊线虫记述及其对豆科植物的寄生性测定[J]. 中国农业科学, 2018, 51(15): 2913-2924. |
[11] | 张玉娟,游均,刘爱丽,黎冬华,于景印,王燕燕,周瑢,宫慧慧,张秀荣. 芝麻发芽期耐盐性鉴定方法研究及耐盐候选基因的挖掘[J]. 中国农业科学, 2018, 51(12): 2235-2247. |
[12] | 刘文萍,吕伟,黎冬华,任果香,张艳欣,文飞,韩俊梅,张秀荣. 芝麻种质资源成株期抗旱性关联分析[J]. 中国农业科学, 2017, 50(4): 625-639. |
[13] | 谢丽雪,张小艳,郑姗,张立杰,李韬. 侵染西番莲的夜来香花叶病毒的分子鉴定及特异性检测[J]. 中国农业科学, 2017, 50(24): 4725-4734. |
[14] | 赵云雷,王红梅,陈伟,龚海燕,桑晓慧,崔艳利,赵佩. 基于优异等位基因的棉花抗黄萎病性状的分子鉴定[J]. 中国农业科学, 2017, 50(2): 216-227. |
[15] | 刘艳阳,梅鸿献,杜振伟,武轲,郑永战,崔向华,郑磊. 基于表型和SSR分子标记构建芝麻核心种质[J]. 中国农业科学, 2017, 50(13): 2433-2441. |
|