中国农业科学 ›› 2020, Vol. 53 ›› Issue (23): 4904-4917.doi: 10.3864/j.issn.0578-1752.2020.23.015
王峰(),王秀杰,赵胜男,闫家榕,卜鑫,张颖,刘玉凤,许涛,齐明芳,齐红岩,李天来(
)
收稿日期:
2020-04-06
接受日期:
2020-06-30
出版日期:
2020-12-01
发布日期:
2020-12-09
通讯作者:
李天来
作者简介:
王峰,E-mail: 基金资助:
WANG Feng(),WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai(
)
Received:
2020-04-06
Accepted:
2020-06-30
Online:
2020-12-01
Published:
2020-12-09
Contact:
TianLai LI
摘要:
花青素是植物中一类重要的类黄酮化合物,在植物花朵、果实等器官色泽形成和抗氧化过程中起着重要作用。植物组织中花青素的形成依赖于光信号,但是光信号对花青素生物合成的调控机制及信号网络很大程度上还不清晰。本文简述了花青素生物合成及运转过程的研究进展,简要归纳了MYB、bHLH、WDR三类主要因子对花青素合成的转录调控作用,重点阐释光信号(光强、光质、光照时长)对植物花青素合成的调控作用。研究表明,光环境(光强、光质、光照时长)主要通过不同的光受体(UVR8、CRYs、PHOTs、PHYs)影响光信号通路重要因子COP1的泛素化能力和HY5的稳定性,以及其他光信号转录因子如光敏色素互作因子PIFs的稳定性,进而调控花青素的生物合成过程。这些光信号因子一方面直接结合到调控花青素合成的MYB、bHLH、WDR三大类转录因子上,转录激活或抑制它们的表达进而调控花青素的合成;另一方面,这些光信号因子通过与MYB、bHLH、WDR三大类转录因子蛋白互作,影响它们形成的MBW复合体稳定性,进而调控花青素的合成。此外,这些光信号因子还可以通过不依赖于MBW复合体的通路调控花青素的合成,如HY5通过调控miR858影响花青素的生物合成;另外,一些未知的光响应因子可能以不依赖MBW通路的方式直接或间接地调控花青素合成基因和液泡膜上的运转蛋白,改变液泡酸化,调节花青素的合成。同时,光信号会影响光合电子传递,光合电子传递链中的一些因子也会通过依赖和不依赖MBW的途径影响植物花青素的合成。这些途径如何协调以及哪些信号因子优先受光环境(光强、光质、光照时间)调控?本文为深入研究光信号对花青素生物合成的调控机理提供参考,以探索光调控花青素积累的有效途径及靶标分子,为利用基因工程、代谢工程和光环境调控手段改良园艺植物花青素积累提供理论基础。
王峰,王秀杰,赵胜男,闫家榕,卜鑫,张颖,刘玉凤,许涛,齐明芳,齐红岩,李天来. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学, 2020, 53(23): 4904-4917.
WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops[J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[1] |
WEI J Y, WU H J, ZHANG H Q, LI F, CHEN S R, HOU B H, SHI Y H, ZHAO L J, DUAN H J . Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. International Journal of Molecular Medicine, 2018,41(3):1608-1618.
doi: 10.3892/ijmm.2018.3378 pmid: 29328429 |
[2] |
ISAAK C K, PETKAU J C, BLEWETT H, KARMIN O, SIOW Y L . Lingonberry anthocyanins protect cardiac cells from oxidative-stress- induced apoptosis. Canadian Journal of Physiology and Pharmacology, 2017,95(8):904-910.
doi: 10.1139/cjpp-2016-0667 pmid: 28384410 |
[3] |
YOSHIDA K, KONDO T, OKAZAKI Y, KATOU K . Cause of blue petal colour. Nature, 1995,373:291.
doi: 10.1038/373291a0 |
[4] |
POUSTKA F, IRANI N G, FELLER A, LU Y, POURCEL L, FRAME K, GROTEWOLD E . A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiology, 2007,145(4):1323-1335.
doi: 10.1104/pp.107.105064 pmid: 17921343 |
[5] |
HU D G, SUN C H, MA Q J, YOU C X, CHENG L L, HAO Y J . MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 2016,170(3):1315-1330.
doi: 10.1104/pp.15.01333 pmid: 26637549 |
[6] |
SHITAN N, YAZAKI K . New insights into the transport mechanisms in plant vacuoles. International Review of Cell & Molecular Biology, 2013,305:383-433.
doi: 10.1016/B978-0-12-407695-2.00009-3 pmid: 23890387 |
[7] |
RAMSAY N A, GLOVER B J . MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science, 2005,10(2):63-70.
doi: 10.1016/j.tplants.2004.12.011 pmid: 15708343 |
[8] |
LIU Y, TIKUNOV Y, SCHOUTEN R E, MARCELIS L F M, VISSER R G F, BOVY A . Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A Review. Frontiers in Chemistry, 2018,6:52.
doi: 10.3389/fchem.2018.00052 pmid: 29594099 |
[9] |
GONZALEZ A, ZHAO M, LEAVITT J M, LLOYD A M . Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008,53(5):814-827.
doi: 10.1111/j.1365-313X.2007.03373.x pmid: 18036197 |
[10] |
DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L . MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010,15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005 |
[11] |
ZHU Z X, WANG H L, WANG Y T, GUAN S, WANG F, TANG J Y, ZHANG R J, XIE L L, LU Y Q . Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation. Journal of Experimental Botany, 2015,66(13):3775-3789.
doi: 10.1093/jxb/erv173 pmid: 25911741 |
[12] |
PAZ-ARES J, GHOSAL D, WIENAND U, PETERSON P A, SAEDLER H . The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO Journal, 1987,6:3553-3558.
pmid: 3428265 |
[13] |
QUATTROCCHIO F, WING J F, LEPPEN H, MOL J, KOES R E . Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. The Plant Cell, 1993,5:1497-1512.
doi: 10.1105/tpc.5.11.1497 pmid: 12271045 |
[14] |
YAMAGISHI M, SHIMMOYAMADA Y, NAKATSUKA T, MASUDA K . Two R2R3-MTB Genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic Hybrid Lily. Plant and Cell Physiology, 2010,51(3):463-474.
doi: 10.1093/pcp/pcq011 pmid: 20118109 |
[15] |
SUN C L, DENG L, DU M M, ZHAO J H, CHEN Q, HUANG T T, JIANG H L, LI C B, LI C Y . A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Molecular Plant, 2020,13(1):42-58.
doi: 10.1016/j.molp.2019.10.010 pmid: 31678614 |
[16] |
YAN S S, CHEN N, HUANG Z J, LI D J, ZHI J J, YU B W, LIU X X, CAO B H, QIU Z K . Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist, 2020,225(5):2048-2063.
doi: 10.1111/nph.16272 pmid: 31625612 |
[17] |
COLANERO S, TAGLIANI A, PERATA P, GONZALI S . Alternative splicing in the Anthocyanin fruit gene encoding an R2R3 MYB transcription factor affects anthocyanin biosynthesis in tomato fruits. Plant Communications, 2020,1(1):100006.
doi: 10.1016/j.xplc.2019.100006 |
[18] |
TOHGE T, NISHIYAMA Y, HIRAI M Y, YANO M, NAKAJIMA J, AWAZUHARA M, INOUE E, TAKAHASHI H, GOODENOWE D B, KITAYAMA M, NOJI M, YAMAZAKI M, SAITO K . Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. The Plant Journal, 2005,42:218-235.
doi: 10.1111/j.1365-313X.2005.02371.x pmid: 15807784 |
[19] |
PEEL G J, PANG Y, MODOLO L V, DIXON R A . The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. The Plant Journal, 2009,59(1):136-149.
doi: 10.1111/j.1365-313X.2009.03885.x pmid: 19368693 |
[20] |
ESPLEY R V, HELLENS R P, PUTTERILL J, STEVESON D E, KUTTY-AMMA S, ALLAN A C . Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 2007,49(3):414-427.
doi: 10.1111/j.1365-313X.2006.02964.x pmid: 17181777 |
[21] |
ESPLEY R V, BRENDOLISE C, CHAGNÉ D, KUTTY-AMMA S, GREEN S, VOLZ R, PUTTERILL J, SCHOUTEN H J, GARDINER S E, HELLENS R P, ALLAN A C . Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell, 2009,21(1):168-183.
doi: 10.1105/tpc.108.059329 pmid: 19151225 |
[22] |
MEDINA-PUCHE L, CUMPLIDO-LASO G, AMIL-RUIZ F, HOFFMANN T, RING L, RODRíGUEZ-FRANCO A, CABALLERO J L, SCHWAB W, MUñOZ-BLANCO J, BLANCO-PORTALES R . MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria×ananassa fruits. Journal of Experimental Botany, 2014,65(2):401-417.
doi: 10.1093/jxb/ert377 |
[23] |
STARKEYIČ P, PAUKŠTYTĖ J, KAZANAVIČIŪTĖ V, DENKOVSKIENĖ E, STANYS V, BENDOKAS V, ŠIKŠNIANAS T, RAŽANSKIENĖ A, RAŽANSKAS R . Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS ONE, 2015,10(5):e0126991.
doi: 10.1371/journal.pone.0126991 pmid: 25978735 |
[24] |
RAVAGLIA D, ESPLEY R V, HENRY-KIRK R A, ANDREOTTI C, ZIOSI V, HELLENS R P, COSTA G, ALLAN A C . Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013,13:68.
doi: 10.1186/1471-2229-13-68 pmid: 23617716 |
[25] |
WANG Z G, MENG D, WANG A D, LI T L, JIANG S L, CONG P H, LI T Z . The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology, 2013,162(2):885-896.
doi: 10.1104/pp.113.214700 |
[26] |
NAKATSUKA T, HARUTA K S, PITAKSUTHEEPONG C, ABE Y, KAKIZAKI Y, YAMAMOTO K, SHIMADA N, YAMAMURA S, NISHIHARA M . Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant & Cell Physiology, 2008,49(12):1818-1829.
doi: 10.1093/pcp/pcn163 pmid: 18974195 |
[27] |
LIU X F, XIANG L L, YIN X R, GRIERSON D, LI F, CHEN K S, YIN X R . The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Scientia Horticulturae, 2015a,194:278-285.
doi: 10.1016/j.scienta.2015.08.018 |
[28] |
COSTANTINI L, MALACARNE G, LORENZI S, TROGGIO M, MATTIVI F, MOSER C, GRANDO M S . New candidate genes for the fine regulation of the colour of grapes. Journal of Experimental Botany, 2015,66(15):4427-4440.
doi: 10.1093/jxb/erv159 pmid: 26071528 |
[29] |
CHAGNÉ D, WANG K L, ESPLEY R V, VOLZ R K, HOW N M, ROUSE S, BRENDOLISE C, CARLISE C M, KUMAR S, DE SILVA N, MICHELETTI D, MCGHIE T, CROWHURST R N, STOREY R D, VELASCO R, HELLENS R P, GARDINER S E, ALLAN A C . An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology, 2013,161:225-239.
doi: 10.1104/pp.112.206771 |
[30] |
AN X H, TIAN Y, CHEN K Q, LIU X J, LIIU D D, XIE X B, CHENG C G, CONG P H, HAO Y J . MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant and Cell Physiology, 2014,56(4):650-662.
doi: 10.1093/pcp/pcu205 pmid: 25527830 |
[31] |
JIAN W, CAO H H, YUAN S, LIU Y D, LU J F, LU W, LI N, WANG J H, ZOU J, TANG N, XU C, CHENG Y L, GAO Y Q, XI W P, BOUZAYEN M, LI Z G . SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Horticulture Research, 2019,6:22.
doi: 10.1038/s41438-018-0098-y pmid: 30729012 |
[32] |
DUBOS C, LE GOURRIEREC J, BAUDRY A, HUEP G, LANET E, DEBEAUJOI I, ROUTABOUL J M, ALBORESI A, WEISSHAAR B, LEPINIEC L . MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal, 2008,55(6):940-953.
doi: 10.1111/j.1365-313X.2008.03564.x pmid: 18532978 |
[33] |
PÉREZ-DÍAZ J R, PÉREZ-DÍAZ J, MADRID-ESPINOZA J, GONZÁLEZ-VILLANUEVA E, MORENO Y, RUIZ-LARA S . New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Molecular Biology, 2016,90:63-76.
doi: 10.1007/s11103-015-0394-y pmid: 26497001 |
[34] |
GAO J J, SHEN X F, ZHANG Z, PENG R H, XIONG A S, XU J, ZHU B, ZHENG J L, YAO Q H . The MYB transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2011,106(2):235-242.
doi: 10.1007/s11240-010-9912-4 |
[35] |
SALVALLINI A, PIMENTEL P, MOYA-LEÓN M A, HERRERA R . Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry, 2013,90:25-36.
doi: 10.1016/j.phytochem.2013.02.016 pmid: 23522932 |
[36] |
MATSUI K, UMEMURA Y, OHME-TAKAGI M . AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal, 2008,55(6):954-967.
doi: 10.1111/j.1365-313X.2008.03565.x pmid: 18532977 |
[37] |
GOU J Y, FELIPPES F F, LIU C J, WEIGEL D, WANG J W . Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156- targeted SPL transcription factor. The Plant Cell, 2011,23:1512-1522.
doi: 10.1105/tpc.111.084525 pmid: 21487097 |
[38] |
CAVALLINI E, MATUS J T, FINEZZO L, ZENONI S, LOYOLA R, GUZZO F, SCHLECHTER R, AGEORGES A, ARCE-JOHNSON P, TORNIELLI G B . The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology, 2015,167(4):1448-1470.
doi: 10.1104/pp.114.256172 pmid: 25659381 |
[39] |
ALBERT N W, LEWIS D H, ZHANG H, SCHWINN K E, JAMESON P E, DAVIES K M . Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. The Plant Journal, 2011,65(5):771-784.
doi: 10.1111/j.1365-313X.2010.04465.x pmid: 21235651 |
[40] |
ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H B, MONTEFIORI M, BRENDOLISE C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E . A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell, 2014,26(3):962-980.
doi: 10.1105/tpc.113.122069 pmid: 24642943 |
[41] |
ZHU H F, FITZSIMMONS K, KHANDLWAL A, KRANZ R G . CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Molecular Plant, 2009,2(4):790-802.
doi: 10.1093/mp/ssp030 pmid: 19825656 |
[42] |
SPELT C, QUATTROCCHIO F, MOL J N, KOES R . anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell, 2000,12(9):1619-1632.
doi: 10.1105/tpc.12.9.1619 pmid: 11006336 |
[43] |
CHANDLER V L, RADICELLA J P, ROBBINS T P, CHEN J, TURKS D . Two regulatory genes of the maize anthocyanin pathway are homologous: Isolation of B utilizing R genomic sequences. The Plant Cell, 1989,1(12):1175-1183.
doi: 10.1105/tpc.1.12.1175 pmid: 2535537 |
[44] |
CONSONNI G, VIOTTI A, DELLAPORTA S L , TONELLI C. cDNA nucleotide sequence of Sn, a regulatory gene in maize. Nucleic Acids Research, 1992,20(2):373.
doi: 10.1093/nar/20.2.373 pmid: 1741268 |
[45] |
BAUDRY A, HEIM M A, DUBREUCQ B, CABOCHE M, WEISSHAAR B, LEPINIEC L . TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2004,39(3):366-380.
doi: 10.1111/j.1365-313X.2004.02138.x pmid: 15255866 |
[46] |
LI P H, CHEN B B, ZHANG G Y, CHEN L X, DONG Q, WEN J Q, MYSORE K S, ZHAO J . Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytologist, 2016,210(3):905-921.
doi: 10.1111/nph.13816 pmid: 26725247 |
[47] |
BAI Y, PATTANAIK S, PATRA B, WERKMAN J R, XIE C H, YUAN L . Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b of tobacco have originated from two ancestors and are functionally active. Planta, 2011,234(2):363-375.
doi: 10.1007/s00425-011-1407-y |
[48] |
ELOMMA P, UIMARI A, MEHTO M, ALBERT V A, LAITINEN R A, TEERI T H . Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein- promoter interactions between the anciently diverged monocots and eudicots. Plant Physiology, 2003,133(4):1831-1842.
doi: 10.1104/pp.103.026039 pmid: 14605235 |
[49] |
SHIMIZU Y, MAEDA K, KATO M, SHIMOMURA K . Co-expression of GbMYB1 and GbMYC1 induces anthocyanin accumulation in roots of cultured Gynura bicolor DC. plantlet on methyl jasmonate treatment. Plant Physiology and Biochemistry, 2011,49(2):159-167.
doi: 10.1016/j.plaphy.2010.11.006 |
[50] |
LAI B, DU L N, LIU R, HU B, SU W B, QIN Y H, ZHAO J T, WANG H C, HU G B . Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation. Frontiers in Plant Science, 2016,7:166.
doi: 10.3389/fpls.2016.00166 pmid: 26925082 |
[51] |
DE VETTEN N, QUATTROCCHIO F, MOL J, KOES R . The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals. Genes & Development, 1997,11(11):1422-1434.
doi: 10.1101/gad.11.11.1422 pmid: 9192870 |
[52] |
CAREY C C, STRAHLE J T, SELINGER D A, CHANDLER V L . Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. The Plant Cell, 2004,16(2):450-464.
doi: 10.1105/tpc.018796 pmid: 14742877 |
[53] |
LIU X F, YIN X R, ALLAN A C, LIN-WANG K, SHI Y N, HUANG Y J, FERGUSON I B, XU C J, CHEN K S . The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell, Tissue and Organ Culture, 2013,115(3):285-298.
doi: 10.1007/s11240-013-0361-8 |
[54] |
AN X H, TIAN Y, CHEN K Q, WANG X F, HAO Y J . The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology, 2012,169(7):710-717.
doi: 10.1016/j.jplph.2012.01.015 |
[55] |
ZHAO M R, LI J, ZHU L, CHANG P, LI L L, ZANG L Y . Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes, 2019,10(7):496.
doi: 10.3390/genes10070496 |
[56] |
AGUILAR-BARRAGáN A, OCHOA-ALEJO N . Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins in chilli pepper fruit. Biologia Plantarum, 2014,58(3):567-574.
doi: 10.1007/s10535-014-0427-4 |
[57] |
YANG F X, CAI J, YANG Y, LIU Z B . Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis. Plant Cell. Tissue and Organ Culture, 2013,115(2):159-167.
doi: 10.1007/s11240-013-0349-4 |
[58] |
JIA X Y, SHEN J J, LIU H, LI F, DING N, GAO C Y, PATTANAIK S, PATRA B, LI R Z, YUAN L . Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta, 2015,242(1):283-293.
doi: 10.1007/s00425-015-2305-5 pmid: 25916310 |
[59] |
QI T C, SONG S S, REN Q C, WU D W, HUANG H, CHEN Y, FAN M, PENG W, REN C M, XIE D X . The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell, 2011,23(5):1795-1814.
doi: 10.1105/tpc.111.083261 pmid: 21551388 |
[60] |
WANG Y L, WANG Y Q, SONG Z Q, ZHANG H Y . Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Molecular Plant, 2016,9:1395-1405.
doi: 10.1016/j.molp.2016.07.003 pmid: 27450422 |
[61] |
SHIN D H, CHOI M, KIM K, BANG G, CHO M, CHOI S B, CHOI G, PARK Y I . HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters, 2013,587(10):1543-1547.
doi: 10.1016/j.febslet.2013.03.037 |
[62] |
NGUYEN N H, JEONG C Y, KANG G H, YOO S D, HONG S W, LEE H . MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. The Plant Journal, 2015,84(6):1192-1205.
doi: 10.1111/tpj.13077 pmid: 26576746 |
[63] |
AN J P, QU F J, YAO J F, WANG X N, YOU C X, WANG X F, HAO Y J . The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research, 2017,4:17056.
doi: 10.1038/hortres.2017.56 pmid: 29114391 |
[64] |
SHIN J, PARK E, CHOI G . PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal, 2007,49(6):981-994.
doi: 10.1111/j.1365-313X.2006.03021.x pmid: 17319847 |
[65] |
MAIER A, HOECKER U . COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signaling & Behavior, 2015,10(1):e970440.
doi: 10.4161/15592316.2014.970440 pmid: 25482806 |
[66] |
MAZZUCATO A, WILLEMS D, BERNINI R, PICARELLA M E, SANTANGELO E, RUIU F, TILESI F, SORESSI G P . Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation. Plant Physiology and Biochemistry, 2013,72:125-133.
doi: 10.1016/j.plaphy.2013.05.012 |
[67] |
MENG X C, WANG X J . Regulation of flower development and anthocyanin accumulation in Gerbera hybrida. The Journal of Horticultural Science and Biotechnology, 2004,79:131-137.
doi: 10.1080/14620316.2004.11511725 |
[68] |
COMINELLI E, GUSMAROLI G, ALLEGRA D, GALBIATIA M, WADEB H K, JENKINSB G I, TONELLIA C . Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. Journal of Plant Physiology, 2008,165(8):886-894.
doi: 10.1016/j.jplph.2007.06.010 pmid: 17766004 |
[69] |
QUATTROCCHIO F, VERWEIJ W, KROON A, SPELT C, MOL J, KOES R . PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. The Plant Cell, 2006,18(5):1274-1291.
doi: 10.1105/tpc.105.034041 pmid: 16603655 |
[70] |
ALBEA N W, LEWIS D H, ZHANG H B, IRVING L J, JAMESON P E, DAVIES K M . Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany, 2009,60(7):2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423 |
[71] | 邵婉璐, 李月灵, 高松, 李钧敏, 梁宗锁 . 光照强度对成熟红颜草莓果实着色和花青素生物合成的影响及可能的分子机制. 植物研究, 2018,38(5):661-668. |
SHAO W L, LI Y L, GAO S, LI J M, LIANG Z S . Effects of light intensity on the fruit coloration and anthocyanian biosynthesis in Fragaria × ananassa Duch.'Benihoppe' and the possible molecular mechanism. Bulletin of Botanical Research, 2018,38(5):661-668. (in Chinese) | |
[72] |
ZHANG Y J, LI Y, LI W P, HU Z L, YU X H, TU Y, ZHANG M, HUANG J Y, CHEN G P . Metabolic and molecular analysis of nonuniform anthocyanin pigmentation in tomato fruit under high light. Horticulture Research, 2019,6:56.
doi: 10.1038/s41438-019-0138-2 pmid: 31098031 |
[73] |
GU K D, WANG C K, HU D G, HAO Y J . How do anthocyanins paint our horticultural products? Scientia Horticulturae, 2019,249:257-262.
doi: 10.1016/j.scienta.2019.01.034 |
[74] |
KLEINE T, KINDGREN P, BENEDICT C, HENDRICKSON L, STRAND A . Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiology, 2007,144(3):1391-1406.
doi: 10.1104/pp.107.098293 pmid: 17478635 |
[75] |
DAS P K, BANG G, CHOI S B, YOO S D, PARK Y I . Photosynthesis-dependent anthocyanin pigmentation in Arabidopsis. Plant Signaling & Behavior, 2011,6(1):23-25.
doi: 10.4161/psb.6.1.14082 pmid: 21248473 |
[76] |
胡可, 韩科厅, 戴思兰 . 环境因子调控植物花青素苷合成及呈色机理. 植物学报, 2010,45(3):307-318.
doi: 10.3969/j.issn.1674-3466.2010.03.002 |
HU K, HAN K T, DAI S H . Regulation of plant anthocyanin synthesis and pigmentation by environmental factors. Bulletin of Botany, 2010,45(3):307-318. (in Chinese)
doi: 10.3969/j.issn.1674-3466.2010.03.002 |
|
[77] | 袁利 . UV-C处理对紫甘蓝花青素合成的影响以及花青素酰基转移酶的克隆[D]. 北京: 中国农业科学院, 2018. |
YUAN L . Study on effect from UV-C treatment on anthocyanin biosynthesis and the cloning of anthocyanin acyltransferase of Purple cabbage[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[78] |
喻譞, 姜璐璐, 王焕宇, 金鹏, 郑永华 . UV-C处理对杨梅采后品质及苯丙烷类代谢的影响. 食品科学, 2015,36(12):255-259.
doi: 10.7506/spkx1002-6630-201512048 |
YU X, JIANG L L, WANG H Y, JIN P, ZHENG Y H . Effects of UV-C treatment on quality and phenylpropanoid metabolism of postharvest Chinese bayberry fruit. Food Science, 2015,36(12):255-259. (in Chinese)
doi: 10.7506/spkx1002-6630-201512048 |
|
[79] | 杨乐, 杨俊枫, 侯智霞, 宫中志, 王冲, 史文君 . UV-B对不同发育时期离体蓝莓主要果实品质及相关酶活性的影响. 西北植物学报, 2015,35(12):2477-2482. |
YANG L, YANG J F, HOU Z X, GONG Z Z, WANG C, SHI W J . Effects of UV-B treatment on the major quality of Blueberry and related enzyme activities in different developmental stages. Acta Botanica Boreali-Occidentalia Sinica, 2015,35(12):2477-2482. (in Chinese) | |
[80] |
HUANG X, OUYANG X, YANG P, LAU O S, CHEN L, WEI N, DENG X W . Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(41):16669-16674.
doi: 10.1073/pnas.1316622110 |
[81] |
PASSERI V, KOES R, QUATTROCCHIO F M . New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles. Frontiers in Plant Science, 2016,7:153.
doi: 10.3389/fpls.2016.00153 pmid: 26909096 |
[82] |
LI Y Y, MAO K, ZHAO C, ZHAO X Y, ZHANG X L, SHU H R, HAO Y J . MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology, 2012,160(2):1011-1022.
doi: 10.1104/pp.112.199703 pmid: 22855936 |
[83] |
PARK J S, CHOUNG M G, KIM J B, HAHN B S, KIM J B, BAE S C, ROH K H, KIM Y H, CHEON C I, SUNG M K, CHO K J . Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Reports, 2007,26(4):507-516.
doi: 10.1007/s00299-006-0255-x |
[84] | 齐艳, 邢燕霞, 郑禾, 孙倩倩, 李殿波, 王晋芳, 石锦, 赵冰, 郭仰东 . UV-A和UV-B提高甘蓝幼苗花青素含量以及调控基因表达分析. 中国农业大学学报, 2014,19(2):86-94. |
QI Y, XING Y X, ZHENG H, SUN Q Q, LI D B, WANG J F, SHI J, ZHAO B, GUO Y D . UV-A and UV-B involved in induction and regulation of anthocyanin biosynthesis in cabbage. Journal of China Agricultural University, 2014,19(2):86-94. (in Chinese) | |
[85] |
QIAN C Z, CHEN Z R, LIU Q, MAO W W, CHEN Y L, TIAN W, LIU Y, HAN J P, OUYANG X H, HUANG X . Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Molecular Plant, 2020. doi: 10.1016/j.molp.2020.02.015.
doi: 10.1016/j.molp.2020.10.009 pmid: 33164768 |
[86] | LIU C C, CHI C, JIN L J, ZHU J H, YU J Q, ZHOU Y H . The bZip transcription factor HY5 mediates CRY1a‐induced anthocyanin biosynthesis in tomato. Plant, Cell and Environment, 2018,41:1762-1775. |
[87] |
MATSUMARU K, KAMIHAMA T, INADA K . Effect of covering materials with different transmission properties on anthocyanin content of eggplant pericarp. Environment Control in Biology, 1971,9:9-15.
doi: 10.2525/ecb1963.9.3-4_9 |
[88] |
GUO J, WANG M H . Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regulation. 2010,62(1):1-8.
doi: 10.1007/s10725-010-9472-y |
[89] |
ZHOU B, LI Y H, XU Z R, YAN H F, HOMMA S, KAWABATA S . Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). Journal of Experimental Botany, 2007,58(7):1771-1781.
doi: 10.1093/jxb/erm036 pmid: 17426056 |
[90] |
JIAO Y L, LAU O S, DENG X W . Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 2007,8(3):217-230.
doi: 10.1038/nrg2049 pmid: 17304247 |
[91] |
LAU O S, DENG X W . The photomorphogenic repressors COP1 and DET1:20 years later. Trends in Plant Science, 2012,17(10):584-593.
doi: 10.1016/j.tplants.2012.05.004 |
[92] |
LIU B, ZUO Z C, LIU H T, LIU X M, LIN C T . Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1activity in response to blue light. Genes & Development, 2011,25(10):1029-1034.
doi: 10.1101/gad.2025011 pmid: 21511871 |
[93] |
JIANG Z H, CHEN C, WANG J, XIE W Y, WANG M, LI X, ZHANG X Y . Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. Journal of Natural Medicines, 2016,70(1):45-53.
doi: 10.1007/s11418-015-0935-3 pmid: 26481011 |
[94] |
MENG L S . Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Photomorphogenic 1. Plant, Cell and Environment, 2015,38:838-851.
doi: 10.1111/pce.12456 pmid: 25256341 |
[95] |
HERNáNDEZ R, EGUCHI T, DEVECI M, KUBOTA C . Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Scientia Horticulturae, 2016,213:270-280.
doi: 10.1016/j.scienta.2016.11.005 |
[96] |
SHI L Y, CAO S F, CHEN W, YANG Z F . Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Scientia Horticulturae, 2014,179:98-102.
doi: 10.1016/j.scienta.2014.09.022 |
[97] |
KOKALJ D, ZLATIĆ E, CIGIĆ B, VIDRIH R . Postharvest light- emitting diode irradiation of sweet cherries (Prunus avium L.) promotes accumulation of anthocyanins. Postharvest Biology and Technology, 2019,148:192-199.
doi: 10.1016/j.postharvbio.2018.11.011 |
[98] |
KADOMURA-ISHIKAWA Y, MIYAWAKI K, NOJI S, TAKAHASHI A . Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. Journal of Plant Research, 2013,126(6):847-857.
doi: 10.1007/s10265-013-0582-2 |
[99] |
XU F, CAO S F, SHI L Y, CHEN W, SU X G, YANG Z F . Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of Agricultural and Food Chemistry, 2014,62(20):4778-4783.
doi: 10.1021/jf501120u |
[100] |
KATZ A, WEISS D . Light regulation of anthocyanin accumulation and chalcone synthase gene expression in Petunia flowers. Israel Journal of Plant Sciences, 1999,47(4):225-229.
doi: 10.1080/07929978.1999.10676777 |
[101] | 陈静, 陈启林, 翁俊, 刘源, 程智慧, 徐春和 . 不同红光/远红光比例(R/FR)的光照影响番茄幼苗叶片中花青素合成的研究. 西北植物学报, 2004,24(10):1773-1778. |
CHEN J, CHEN Q L, WENG J, LIU Y, CHENG Z H, XU C H . Effect of illumination with different red/far-red ratios on anthocyanidin synthesis in tomato seedling leaves. Acta Botanica Boreali- Occidentalia Sinica, 2004,24(10):1773-1778. (in Chinese) | |
[102] |
LIU Z J, ZHANG Y Q, WANG J F, LI P, ZHAO C Z, CHEN Y D, BI Y R . Phytochromeinteracting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Science, 2015,238:64-72.
doi: 10.1016/j.plantsci.2015.06.001 pmid: 26259175 |
[103] |
PFEIFFER A, NAGEL M K, POPP C, WÜST F, BINDICS J, VICZIÁN A, HILTBRUNNER A, NAGY F, KUNKEL T, SCHÄFER E . Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(15):5892-5897.
doi: 10.1073/pnas.1120764109 |
[104] |
MCNELLIS T W, VON AMIM A G, ARAKI T, KOMEDA Y, MISER S, DENG X W . Genetic and molecular analysis of an allelic series of cop1 mutants suggest functional roles for the multiple protein domains. The Plant Cell, 1994,6(4):487-500.
doi: 10.1105/tpc.6.4.487 pmid: 8205001 |
[105] |
潘晓琴, 宋世威 . 光环境影响植物花青素生物合成研究进展. 植物学研究, 2019,8(2):118-125.
doi: 10.12677/BR.2019.82016 |
PAN X Q, SONG S W . Research advance on the effects of light environment on anthocyanin biosynthesis in plants. Botanical Research, 2019,8(2):118-125. (in Chinese)
doi: 10.12677/BR.2019.82016 |
|
[106] | 闫海芳 . 光环境影响花青素合成途径中相关基因表达的机制[D]. 哈尔滨: 东北林业大学, 2003. |
YAN H F . Mechanism of light environment influencing the expression of correlated genes in biosynthesis pathway of anthocyanin[D]. Harbin: Northeast Forestry University, 2003. (in Chinese) | |
[107] | 史宝胜 . 紫叶李叶色生理变化及影响因素研究[D]. 哈尔滨: 东北林业大学, 2006. |
SHI B S . Research on the physiological characters and the influence factors on leave color of cherry plum[D]. Harbin: Northeast Forestry University, 2006. (in Chinese) | |
[108] |
MAIER A, SCHRADER A, KOKKELINK L, FALKE C, WELTER B, INIESTO E, RUBIO V, UHRIG J F, H€ULSKAMP M, HOECKER U . Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. The Plant Journal, 2013,74(4):638-651.
doi: 10.1111/tpj.12153 pmid: 23425305 |
[109] |
TAKOS A M, JAFFE F W, JACOB S R, BOGS J, ROBINSON S P, WALKER A R . Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006,142:1216-1232.
doi: 10.1104/pp.106.088104 pmid: 17012405 |
[110] |
BUTELI E, TITTA L, GIORGIO M, MOCK H P, MATROS A, PETEREK S, SCHIJLEN EGWM, HALL R D, BOVY A G, LUO J, MARTIN C (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 2007,26, 1301-1308.
doi: 10.1038/nbt.1506 pmid: 18953354 |
[111] |
KATSUMOTO Y, FUKUCHI-MIZUTANI M, FUKUI Y, BRUGLIERA F, HOLTON T A, KARAN M, NAKAMURA N, YONEKURA- SAKAKIBARA K, TOGAMI J, PIGEAIRE A . Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiology, 2007,48:1589-1600.
doi: 10.1093/pcp/pcm131 pmid: 17925311 |
[112] |
BRUGLIERA F, TAO G Q, TEMS U, KALC G, MOURADOVA E, PRICE K, STEVENSON K, NAKAMURA N, STACEY I, KATSUMOTO Y, TANAKA Y, MASON J G . Violet/blue chrysanthemums- metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiology, 2013,54:1696-1710.
doi: 10.1093/pcp/pct110 pmid: 23926066 |
[113] |
HE X Z, LI Y, LAWSON D, XIE D Y . Metabolic engineering of anthocyanins in dark tobacco varieties. Physiologia Plantarum, 2017,159:2-12.
doi: 10.1111/ppl.12475 pmid: 27229540 |
[1] | 徐倩, 王晗, 马赛, 胡秋辉, 马宁, 苏安祥, 李辰, 马高兴. 杏鲍菇多糖及其消化产物对淀粉消化酶的抑制及相互作用[J]. 中国农业科学, 2023, 56(2): 357-367. |
[2] | 王一丹,杨发龙,陈弟诗,向华,任玉鹏. 猪腹泻病毒一步法多重TaqMan荧光定量RT-PCR检测法的建立及应用[J]. 中国农业科学, 2023, 56(1): 179-192. |
[3] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[4] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 邱一蕾,吴帆,张莉,李红亮. 亚致死剂量吡虫啉对中华蜜蜂神经代谢基因表达的影响[J]. 中国农业科学, 2022, 55(8): 1685-1694. |
[7] | 王思彤,陈艳,罗雨嘉,杨缘缘,蒋志洋,蒋鑫怡,钟樊,陈好,徐红星,吴俨,段红霞,唐斌. 三种新型化合物对草地贪夜蛾海藻糖与几丁质代谢及生长发育的影响[J]. 中国农业科学, 2022, 55(8): 1568-1578. |
[8] | 范延艮,王域,刘富浩,赵秀秀,向勤锃,张丽霞. 茶树CsHIPP26.1互作蛋白的筛选与验证[J]. 中国农业科学, 2022, 55(8): 1630-1641. |
[9] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[10] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[11] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[12] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[13] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[14] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[15] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
|