中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1630-1641.doi: 10.3864/j.issn.0578-1752.2022.08.013
收稿日期:
2021-08-20
接受日期:
2021-12-10
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
范延艮,E-mail: 876562801@qq.com。|王域,E-mail: 1113405407@qq.com。
基金资助:
FAN YanGen(),WANG Yu(),LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia()
Received:
2021-08-20
Accepted:
2021-12-10
Published:
2022-04-16
Online:
2022-05-11
摘要:
【背景】‘黄金芽’属于光照敏感型黄化茶树(Camellia sinensis)品种,叶片色泽呈现强光黄化、弱光复绿的特点,但叶色响应光照的黄化机制并不明确。前期通过对黄化叶片、遮阴复绿叶片以及常绿品种叶片的蛋白组研究发现,重金属相关异戊二烯化植物蛋白CsHIPP26.1(TEA000549)的表达响应光照强度,表明CsHIPP26.1可能参与调控‘黄金芽’叶色黄化的光响应过程。【目的】通过筛选与CsHIPP26.1互作的光信号响应相关的蛋白,为叶片色泽响应光照信号变化提供科学依据。【方法】以‘黄金芽’茶树1芽2叶为材料进行CsHIPP26.1和互作基因的克隆,经酵母双杂交筛库,然后将筛选得到的目的蛋白进行酵母双杂交点对点验证、体内双分子荧光互补(BiFC)和体外pull-down等技术进行蛋白互作的进一步验证。【结果】通过酵母双杂交对茶树cDNA文库进行筛选,共筛选到26个候选互作蛋白,主要集中在细胞组分、结合以及催化活性方面发挥作用,其中生物素合成代谢过程富集程度较高,与光信号通路及叶绿素合成相关的蛋白只有编号为TEA026466.1的bHLH30转录因子。克隆bHLH30转录因子后发现,该转录因子与茶树光信号传导途径蛋白PIF4处于同一进化树分支,且含有与茶树PIF4蛋白相同的HLH和ACT结构域,将该bHLH30转录因子命名为CsPIF4.2,GenBank登记号为MW116834。进一步通过体外Pull-down蛋白互作和体内双分子荧光互补(BiFC)验证发现,CsHIPP26.1和CsPIF4.2蛋白能够发生互作,并且发生互作的部位在细胞核内。【结论】初步筛选出26个与CsHIPP26.1互作的蛋白,并验证发现CsHIPP26.1能够在细胞核内与其中一个光敏色素互作因子CsPIF4.2发生蛋白相互作用。
范延艮,王域,刘富浩,赵秀秀,向勤锃,张丽霞. 茶树CsHIPP26.1互作蛋白的筛选与验证[J]. 中国农业科学, 2022, 55(8): 1630-1641.
FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant[J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
表1
CsHIPP26.1和CsPIF4.2引物"
引物名称 The Primer | 序列 Sequence (5′-3′) | 序列 Sequence (3′-5′) |
---|---|---|
BD-CsHIPP26.1 | CATATGATGGGTGCTCTGGATCATCTC | GGATCCCATGACAACACAAGCAGCAG |
AD-CsPIF4.2 | GAATTCATGATGTGTGGGAAAAAGG | GGATCCAAGAGACCTGTGTTCAAGGAT |
His-CsHIPP26.1 | GGATCCATGGGTGCTCTGGATCATCTC | GTCGACCATGACAACACAAGCAGCAG |
GST-CsPIF4.2 | GAATTCATGATGTGTGGGAAAAAGG | GTCGACAAAAGAGACCTGTGTTCAAG |
BiFC-N-CsHIPP26.1 | GGATCCATGGGTGCTCTGGATCATCTC | GTCGACCATGACAACACAAGCAGCAG |
BiFC-C-CsPIF4.2 | GGATCCATGATGTGTGGGAAAAAGGA | GTCGACAAGAGACCTGTGTTCAAGGAT |
表2
互作蛋白信息"
编号Number | 蛋白 Protein | 名称 Definition | KEGG通路注释 Annotation of KEGG pathway |
---|---|---|---|
1 | TEA026466.1 | 转录因子bHLH30 Transcription factor bHLH30 (CsPIF4-like) | ko04010 MAPK信号通路 ko04010 MAPK signaling pathway |
2 | TEA017417.1 | 类Barwin内切葡聚糖酶 Barwin-like endoglucanase | ko04010 MAPK信号通路 ko04010 MAPK signaling pathway |
3 | TEA006996.1 | BRI1激酶抑制剂1 BRI1 kinase inhibitor 1 | ko04075植物激素信号转导 Ko04075 Plant hormone signal transduction |
4 | TEA027305.1 | 细胞周期蛋白 Cyclin-like protein | ko03022基础转录因子 ko03022 Basal transcription factors |
5 | TEA028934.1 | 生物素合成酶 Biotin synthase | ko00780生物素代谢 ko00780 Biotin metabolism |
6 | TEA032431.1 | 未表征的蛋白质 Uncharacterized protein | ko00790叶酸生物合成 ko00790 Folate biosynthesis |
7 | TEA006267.1 | 未表征的蛋白质 Uncharacterized protein | ko00790叶酸生物合成 ko00790 Folate biosynthesis |
8 | TEA016398.1 | 未表征的蛋白质 Uncharacterized protein | ko00941 黄酮类生物合成 ko00941 Flavonoid biosynthesis |
9 | TEA022238.1 | UDP-糖基转移酶 UDP-glycosyltransferase | ko00942花青素生物合成 ko00942 Anthocyanin biosynthesis |
10 | TEA030717.1 | HXXXD 型酰基转移酶家族蛋白 HXXXD-type acyl-transferase family protein | ko00940苯丙烷生物合成 ko00940 Phenylpropanoid biosynthesis ko00941黄酮类生物合成 ko00941 Flavonoid biosynthesis ko00945芪、二芳基庚烷和姜酚的生物合成 ko00945 Stilbenoid, diarylheptanoid and gingerol biosynthesis |
11 | TEA032735.1 | 咖啡酰莽草酸酯酶 Caffeoylshikimate esterase | ko00561甘油脂代谢 ko00561 Glycerolipid metabolism |
12 | TEA011538.1 | 未表征的蛋白质 Unnamed protein product | ko03010核糖体 ko03010 Ribosome |
13 | TEA019010.1 | 30S核糖体蛋白S17 30S ribosomal protein S17 | ko03010核糖体 ko03010 Ribosome |
14 | TEA028503.1 | U2小核核糖核蛋白B U2 small nuclear ribonucleoprotein B | ko03040剪接体 ko03040 Spliceosome |
15 | TEA019956.1 | 导入-5 Importin-5 | ko03013核质运输 ko03013 Nucleocytoplasmic transport |
16 | TEA014840.1 | 圈套蛋白YKt Snare protein YKt | ko04130囊泡运输中的SNARE相互作用 ko04130 SNARE interactions in vesicular transport |
17 | TEA015767.1 | 蛋白质STAY-GREEN Protein STAY-GREEN | - |
18 | TEA033782.1 | Poly(rC)结合蛋白 Poly(rC)-binding protein | - |
19 | TEA011052.1 | 胚花2 Embryonic flower 2 | - |
20 | TEA012266.1 | Phragmoplast定向驱动蛋白2 Phragmoplast orienting kinesin 2 | - |
21 | TEA015624.1 | 质脂相关蛋白 Plastid-lipid-associated protein | - |
22 | TEA011412.1 | 肽基-脯氨酰顺反异构酶CYP95 Peptidyl-prolyl cis-trans isomerase CYP95 | - |
23 | TEA005217.1 | DnaJ同源物1 DnaJ homolog 1 | - |
24 | TEA027912.1 | UDP-糖基转移酶 UDP-glycosyltransferase | - |
25 | TEA012996.1 | 未表征的蛋白质 Uncharacterized protein | - |
26 | TEA010659.1 | 未命名的蛋白质产物 Unnamed protein product | - |
[8] | FAN Y G, ZHAO X X, WANG H Y, TIAN Y Y, XIANG Q Z, ZHANG L X. Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar ‘Huangjinya’. Environmental and Experimental Botany, 2019, 166: 103796). |
[9] |
范延艮, 刘富浩, 赵秀秀, 王域, 张丽霞. 茶树‘黄金芽’ CsHIPP26.1基因克隆与光响应表达分析. 植物生理学报, 2021, 57(5): 1087-1097. doi: 10.13592/j.cnki.ppj.2021.0018.
doi: 10.13592/j.cnki.ppj.2021.0018 |
FAN Y G, LIU F H, ZHAO X X, WANG Y, ZHANG L X. Cloning of CsHIPP26.1 in Camellia sinensis ‘Huangjinya’ and analysis of its expression level in response to light intensity. Plant Physiology Journal, 2021, 57(5): 1087-1097. doi: 10.13592/j.cnki.ppj.2021.0018. (in Chinese)
doi: 10.13592/j.cnki.ppj.2021.0018 |
|
[10] |
DE ABREU-NETO J B, TURCHETTO-ZOLET A C, DE OLIVEIRA L F V, ZANETTINI M H B, MARGIS-PINHEIRO M. Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants. The FEBS Journal, 2013, 280(7): 1604-1616. doi: 10.1111/febs.12159.
doi: 10.1111/febs.12159 |
[11] |
TEHSEEN M, CAIRNS N, SHERSON S, COBBETT C S. Metallochaperone-like genes in Arabidopsis thaliana. Metallomics, 2010, 2(8): 556-564. doi: 10.1039/c003484c.
doi: 10.1039/c003484c |
[12] |
GAO W, XIAO S, LI H Y, TSAO S W, CHYE M L. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. The New Phytologist, 2009, 181(1): 89-102. doi: 10.1111/j.1469-8137.2008.02631.x.
doi: 10.1111/j.1469-8137.2008.02631.x. |
[13] |
CHANDRAN D, SHAROPOVA N, IVASHUTA S, GANTT J S, VANDENBOSCH K A, SAMAC D A. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta, 2008, 228(1): 151-166. doi: 10.1007/s00425-008-0726-0.
doi: 10.1007/s00425-008-0726-0 |
[14] |
SUZUKI N, YAMAGUCHI Y, KOIZUMI N, SANO H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. The Plant Journal, 2002, 32(2): 165-173. doi: 10.1046/j.1365-313x.2002.01412.x.
doi: 10.1046/j.1365-313x.2002.01412.x. |
[15] |
BARTH O, VOGT S, UHLEMANN R, ZSCHIESCHE W, HUMBECK K. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Molecular Biology, 2009, 69(1/2): 213-226. doi: 10.1007/s11103-008-9419-0.
doi: 10.1007/s11103-008-9419-0 |
[16] |
BARTH O, ZSCHIESCHE W, SIERSLEBEN S, HUMBECK K. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiologia Plantarum, 2004, 121(2): 282-293. doi: 10.1111/j.0031-9317.2004.00325.x.
doi: 10.1111/j.0031-9317.2004.00325.x. |
[17] |
WIEBKE Z, OLAF B, KATHARINA D, SANDRA B, JULIANE R, KLAUS H. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. The New Phytologist, 2015, 207(4): 1084-96. doi: 10.1111/nph.13419.
doi: 10.1111/nph.13419 |
[18] | RADAKOVIC Z S, ANJAM M S, ESCOBAR E, CHOPRA D, CABRERA J, SILVA A C, ESCOBAR C, SOBCZAK M, GRUNDLER F M W, SIDDIQUE S. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii. Molecular Plant Pathology, 2018: 1917-1928. |
[1] |
TIAN Y Y, WANG H Y, SUN P, FAN Y G, QIAO M M, ZHANG L X, ZHANG Z Q. Response of leaf color and the expression of photoreceptor genes of Camellia sinensis cv. Huangjinya to different light quality conditions. Scientia Horticulturae, 2019, 251: 225-232.
doi: 10.1016/j.scienta.2019.03.032 |
[2] |
TIAN Y Y, WANG H Y, ZHANG Z Q, ZHAO X X, WANG Y, ZHANG L X. An RNA-seq analysis reveals differential transcriptional responses to different light qualities in leaf color of Camellia sinensis cv. Huangjinya. Journal of Plant Growth Regulation, 2001, 19(4): 463-470. doi: 10.1007/s003440010017.
doi: 10.1007/s003440010017 |
[19] | 赵强. 苹果BTB-TAZ蛋白MdBTs调控MdbHLH104影响PMH+-ATP酶的活性和铁的动态平衡[D]. 泰安: 山东农业大学, 2015. |
ZHAO Q. BTB-TAZ protein MdBTs target MdbHLH 104 to regulate the activity of PMH+-ATPase and the homeostasis of iron in apple[D]. Taian: Shandong Agricultural University, 2015. (in Chinese) | |
[20] |
SU M Y, WANG N, JIANG S H, FANG H C, XU H F, WANG Y C, ZHANG Z, ZHANG J, XU L, ZHANG Z Y, CHEN X S. Molecular characterization and expression analysis of the critical floral gene MdAGL24-like in red-fleshed apple. Plant Science, 2018, 276: 189-198. doi: 10.1016/j.plantsci.2018.08.021.
doi: 10.1016/j.plantsci.2018.08.021 |
[21] |
崔红军, 魏玉清. 酵母双杂交系统及其应用研究进展. 安徽农业科学, 2015, 43(13): 45-47. doi: 10.13989/j.cnki.0517-6611.2015.13.152.
doi: 10.13989/j.cnki.0517-6611.2015.13.152 |
CUI H J, WEI Y Q. Review on application status of yeast two hybrid system. Journal of Anhui Agricultural Sciences, 2015, 43(13): 45-47. doi: 10.13989/j.cnki.0517-6611.2015.13.152. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2015.13.152 |
|
[22] |
HASHIDA-OKADO T, OGAWA A, ENDO M, YASUMOTO R, TAKESAKO K, KATO I. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Molecular and General Genetics, 1996, 251(2): 236-244. doi: 10.1007/BF02172923.
doi: 10.1007/BF02172923 |
[23] |
田月月, 张丽霞, 张正群, 李智, 侯剑, 乔明明. 主要气象因子对‘黄金芽’茶树叶片日灼伤害的影响. 山东农业科学, 2017, 49(7): 42-48. doi: 10.14083/j.issn.1001-4942.2017.07.009.
doi: 10.14083/j.issn.1001-4942.2017.07.009 |
TIAN Y Y, ZHANG L X, ZHANG Z Q, LI Z, HOU J, QIAO M M. Influences of main meteorological factors on leaf sunburn of tea cultivar ‘huangjinya'. Shandong Agricultural Sciences, 2017, 49(7): 42-48. doi: 10.14083/j.issn.1001-4942.2017.07.009. (in Chinese)
doi: 10.14083/j.issn.1001-4942.2017.07.009 |
|
[24] |
XU D Q. Multifaceted roles of PIF4 in plants. Trends in Plant Science, 2018, 23(9): 749-751. doi: 10.1016/j.tplants.2018.07.003.
doi: 10.1016/j.tplants.2018.07.003 |
[25] |
HUQ E, QUAIL P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal, 2002, 21(10): 2441-2450. doi: 10.1093/emboj/21.10.2441.
doi: 10.1093/emboj/21.10.2441 |
[26] | INAGAKI N, KINOSHITA K, KAGAWA T, TANAKA A, UENO O, SHIMADA H, TAKANO M. Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings. PLoS ONE, 2015, 10(8): e0135408. |
[27] |
赵杰, 周晋军, 顾建伟, 钱凤芹, 谢先芝. 光敏色素B正调控水稻叶绿素合成和叶绿体的发育. 中国水稻科学, 2012, 26(6): 637-642. doi: 10.3969/j.issn.1001-7216.2012.06.001.
doi: 10.3969/j.issn.1001-7216.2012.06.001 |
ZHAO J, ZHOU J J, GU J W, QIAN F Q, XIE X Z. Phytochrome B positively regulates chlorophyll biosynthesis and chloroplast development in rice. Chinese Journal of Rice Science, 2012, 26(6): 637-642. doi: 10.3969/j.issn.1001-7216.2012.06.001. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2012.06.001 |
|
[28] | TOLEDO-ORTIZ G, JOHANSSON H, LEE K P, BOU-TORRENT J, STEWART K, STEEL G, RODRIGUEZ-CONCEPEION M, HALLIDAY K J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 2014, 10(6): e1004416. |
[29] |
TANG W J, WANG W Q, CHEN D Q, JI Q, JING Y J, WANG H Y, LIN R C. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. The Plant Cell, 2012, 24(5): 1984-2000. doi: 10.1105/tpc.112.097022.
doi: 10.1105/tpc.112.097022 |
[30] |
LORRAIN S, ALLEN T, DUEK P D, WHITELAM G C, FANKHAUSER C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. The Plant Journal, 2008, 53(2): 312-323. doi: 10.1111/j.1365-313X.2007.03341.x.
doi: 10.1111/j.1365-313X.2007.03341.x. |
[31] |
MIGUEL D L, JEAN-MICHEL D, MARIANA R F, MARIELA P, MANUEL I P J, SÉVERINE L, CHRISTIAN F, ANGEL B M, ELENA T, SALOMÉ P. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451(7177): 480-484. doi: 10.1038/nature06520.
doi: 10.1038/nature06520 |
[32] | 陈笑笑. PIF4介导光质调控番茄低温抗性的作用机制[D]. 杭州: 浙江大学, 2019. |
CHEN X X. The mechanisms of PIF4-mediated light quality- regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2019. (in Chinese) | |
[33] |
LAU O S, SONG Z J, ZHOU Z M, DAVIES K A, CHANG J, YANG X, WANG S Q, LUCYSHYN D, TAY I H Z, WIGGE P A, BERGMANN D C. Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development. Current Biology, 2018, 28(8): 1273-1280. doi: 10.1016/j.cub.2018.02.054.
doi: 10.1016/j.cub.2018.02.054 |
[34] |
BO Z, MATTIAS H, SEVERINE L, MIKAEL N, LÁSZLÓ B, CHRISTIAN F, OVE N. Blade-on-petiole proteins act in an e3 ubiquitin ligase complex to regulate phytochrome interacting factor 4 abundance. eLife, 2017, 6: e26759. doi: 10.7554/eLife.26759.
doi: 10.7554/eLife.26759 |
[35] |
NIETO C, LÓPEZ-SALMERÓN V, DAVIÈRE J M, PRAT S. ELF3-PIF 4 interaction regulates plant growth independently of the evening complex. Current Biology, 2015, 25(2): 187-193. doi: 10.1016/j.cub.2014.10.070.
doi: 10.1016/j.cub.2014.10.070 |
[3] |
王开荣, 李明, 梁月荣, 张龙杰, 沈立铭, 王盛彬. 茶树新品种黄金芽选育研究. 中国茶叶, 2008, 30(4): 21-23. doi: 10.3969/j.issn.1000-3150.2008.04.007.
doi: 10.3969/j.issn.1000-3150.2008.04.007 |
WANG K R, LI M, LIANG Y R, ZHANG L J, SHEN L M, WANG S B. Research on the breeding of new tea variety Huangjinya. China Tea, 2008, 30(4): 21-23. doi: 10.3969/j.issn.1000-3150.2008.04.007. (in Chinese)
doi: 10.3969/j.issn.1000-3150.2008.04.007 |
|
[4] |
刘丁丁, 梅菊芬, 王君雅, 汤榕津, 陈亮, 马春雷. 茶树白化突变研究进展. 中国茶叶, 2020, 42(4): 24-35. doi: 10.3969/j.issn.1000-3150.2020.04.006.
doi: 10.3969/j.issn.1000-3150.2020.04.006 |
LIU D D, MEI J F, WANG J Y, TANG R J, CHEN L, MA C L. Research progress on albino trait of tea plant. China Tea, 2020, 42(4): 24-35. doi: 10.3969/j.issn.1000-3150.2020.04.006. (in Chinese)
doi: 10.3969/j.issn.1000-3150.2020.04.006 |
|
[5] |
王开荣, 李明, 张龙杰, 梁月荣. 白化茶种质资源分类研究. 茶叶, 2015, 41(3): 126-129. doi: 10.3969/j.issn.0577-8921.2015.03.002.
doi: 10.3969/j.issn.0577-8921.2015.03.002 |
WANG K R, LI M, ZHANG L J, LIANG Y R. Studies on classification of albino tea resources. Journal of Tea, 2015, 41(3): 126-129. doi: 10.3969/j.issn.0577-8921.2015.03.002. (in Chinese)
doi: 10.3969/j.issn.0577-8921.2015.03.002 |
|
[6] | 王开荣, 李明, 梁月荣. 光照敏感型白化茶. 杭州: 浙江大学出版社, 2014. |
WANG K R, LI M, LIANG Y R. Light-sensitive albino tea. Hangzhou: Zhejiang University Press, 2014. (in Chinese) | |
[7] |
范延艮, 赵秀秀, 王翰悦, 田月月, 向勤锃, 张丽霞. 黄金芽不同色泽叶片生理特性研究. 茶叶科学, 2019, 39(5): 530-536. doi: 10.13305/j.cnki.jts.2019.05.004.
doi: 10.13305/j.cnki.jts.2019.05.004 |
FAN Y G, ZHAO X X, WANG H Y, TIAN Y Y, XIANG Q Z, ZHANG L X. Study on physiological characteristics of leaves with different colors of ‘huangjinya’. Journal of Tea Science, 2019, 39(5): 530-536. doi: 10.13305/j.cnki.jts.2019.05.004. (in Chinese)
doi: 10.13305/j.cnki.jts.2019.05.004 |
[1] | 刘德帅, 冯美, 孙雨桐, 王烨, 迟敬楠, 姚文孔. 葡萄VvGAI1与VvJAZ9蛋白互作及低温下的表达模式分析[J]. 中国农业科学, 2023, 56(15): 2977-2994. |
[2] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[3] | 张志兴,敏秀梅,宋果,陈花,许海龙,林文雄. 14-3-3蛋程中的互作靶蛋白鉴定及其对外源激素的响应[J]. 中国农业科学, 2021, 54(12): 2523-2537. |
[4] | 原新博,程婷婷,惠小涵,陈章玉,王瑞红,柯卫东,郭宏波. 莲藕多酚氧化酶互作蛋白的筛选及验证[J]. 中国农业科学, 2020, 53(18): 3777-3791. |
[5] | 刘慧芳,贺正,贾彪,刘志,李振洲,付江鹏,慕瑞瑞,康建宏. 基于机器学习的滴灌玉米光合响应特征[J]. 中国农业科学, 2019, 52(17): 2939-2950. |
[6] | 李江鹏,刘海俊,黄志午,刘晓英,尤杰,徐志刚. 光谱对水稻灌浆期剑叶光合及叶绿素荧光特性的影响[J]. 中国农业科学, 2019, 52(16): 2768-2775. |
[7] | 张惠媛,刘永伟,杨军峰,张双喜,于太飞,陈隽,陈明,周永斌,马有志,徐兆师,付金东. 小麦转录因子基因TaWRKY33的耐盐性分析[J]. 中国农业科学, 2018, 51(24): 4591-4602. |
[8] | 赵青青,李俊平,梁立滨,黄山雨,周陈陈,赵玉辉,王倩,周圆,姜丽,陈化兰,李呈军. 流感病毒PA蛋白与宿主蛋白PCBP1的相互作用[J]. 中国农业科学, 2018, 51(17): 3389-3396. |
[9] | 茹京娜,于太飞,陈隽,陈明,周永斌,马有志,徐兆师,闵东红. 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选[J]. 中国农业科学, 2017, 50(13): 2411-2422. |
[10] | 赵娟莹,刘佳明,冯志娟,陈明,周永斌,陈隽,徐兆师,郭长虹. 大豆锌指转录因子GmDi19-5对高温的响应及互作蛋白的筛选[J]. 中国农业科学, 2017, 50(12): 2389-2398. |
[11] | 安秀红,厉恩茂,李 敏,李 壮,张修德,程存刚. 苹果MdJAZ1基因表达及蛋白互作分析[J]. 中国农业科学, 2016, 49(13): 2642-2650. |
[12] | 鲍建军,苏锐,王庆增,吕晓阳,高雯,于嘉瑞,王利宏,陈 玲,吴文忠,盛水兴,周洪,孙伟,戴国俊. Smads与Hippo通道中YAP1基因在湖羊肌肉组织中时空表达研究及关联分析[J]. 中国农业科学, 2016, 49(11): 2203-2213. |
[13] | 李慧峰,王小非,冉昆,何平,王海波,李林光. 苹果光响应转录因子MdHY5表达及蛋白互作分析[J]. 中国农业科学, 2014, 47(21): 4318-4327. |
[14] | 郭萌萌1;2;3;陈明2;刘荣榜2;马有志2;李连成2;徐兆师2;张小红1;3. 拟南芥液泡分拣蛋白AtVPS25调控植物生长素响应的功能分析[J]. 中国农业科学, 2014, 47(17): 3501-3512. |
[15] | 于太飞1, 2, 徐兆师2, 李盼松2, 陈明2, 李连城2, 张俊华1, 马有志2. 小麦蛋白激酶TaMAPK2互作蛋白的筛选与验证[J]. 中国农业科学, 2014, 47(13): 2494-2503. |
|