中国农业科学 ›› 2023, Vol. 56 ›› Issue (2): 357-367.doi: 10.3864/j.issn.0578-1752.2023.02.012
徐倩(),王晗,马赛,胡秋辉,马宁,苏安祥,李辰,马高兴()
收稿日期:
2022-03-31
接受日期:
2022-06-24
出版日期:
2023-01-16
发布日期:
2023-02-07
通讯作者:
马高兴,E-mail:作者简介:
徐倩,E-mail:基金资助:
XU Qian(),WANG Han,MA Sai,HU QiuHui,MA Ning,SU AnXiang,LI Chen,MA GaoXing()
Received:
2022-03-31
Accepted:
2022-06-24
Online:
2023-01-16
Published:
2023-02-07
摘要:
【目的】以杏鲍菇多糖(PEP)为原料,探究其基本理化性质和对葡萄糖扩散和吸附能力的影响。利用体外模拟消化模型制备PEP模拟消化产物(D-PEP),探究PEP和D-PEP对与糖代谢相关的消化酶活性的影响,并进一步评价其与α-葡萄糖苷酶的相互作用。【方法】首先基于前人的研究方法对PEP的基本理化性质进行评价;然后采用DNS法测定PEP和D-PEP对α-淀粉酶活力的抑制效果,采用对硝基苯-α-D-吡喃葡萄糖苷(PNPG)法测定对α-葡萄糖苷酶抑制率;最后采用荧光光谱法研究PEP和D-PEP与α-葡萄糖苷酶的相互作用。【结果】PEP具备良好的溶解/溶胀性、持水/持油性,且其对葡萄糖扩散和吸附能力具有一定的抑制作用。PEP对麦芽糖酶和α-葡萄糖苷酶具有显著的抑制作用,对α-淀粉酶没有抑制作用,当PEP浓度为4 mg·mL-1时,其对麦芽糖酶和α-葡萄糖苷酶的抑制率分别为(77.20±2.71)%和(78.91±0.51)%。然而消化产物D-PEP对3种酶都有显著的抑制作用,4 mg·mL-1的D-PEP对α-淀粉酶、麦芽糖酶和α-葡萄糖苷酶的抑制率分别为(84.08±1.79)%、(20.58±1.20)%和(95.58±0.12)%。荧光光谱法结果表明,随着PEP和D-PEP浓度增大,α-葡萄糖苷酶的内源荧光逐渐减弱,且其对α-葡萄糖苷酶的内源荧光淬灭以静态淬灭为主,其结合位点大于等于1。【结论】与PEP相比,D-PEP不仅能抑制麦芽糖酶和α-葡萄糖苷酶活性,对α-淀粉酶活力也有显著的抑制效果,D-PEP对淀粉消化酶表现出更好的抑制效果,可在一定程度上影响机体糖代谢。
徐倩, 王晗, 马赛, 胡秋辉, 马宁, 苏安祥, 李辰, 马高兴. 杏鲍菇多糖及其消化产物对淀粉消化酶的抑制及相互作用[J]. 中国农业科学, 2023, 56(2): 357-367.
XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes[J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
表3
葡萄糖在不同浓度PEP溶液中的扩散能力"
时间 Time (min) | 空白 Blank control | PEP (mg·mL-1) | 瓜尔豆胶 Guar gum (10 mg·mL-1) | |||
---|---|---|---|---|---|---|
1 | 5 | 10 | 15 | |||
10 | 15.18±0.73a | 14.74±0.38ab | 14.51±0.15ab | 14.38±0.10b | 14.45±0.09ab | 14.56±0.08ab |
20 | 22.62±3.36a | 20.36±0.03a | 17.18±0.33b | 16.69±0.39b | 14.69±0.62b | 14.97±0.16b |
30 | 31.16±2.32a | 26.04±2.71b | 23.21±1.42bc | 22.11±1.41c | 18.33±0.99d | 16.44±0.76d |
45 | 41.42±2.55a | 36.10±2.91b | 32.20±1.18c | 33.13±1.64bc | 24.91±1.76d | 20.25±0.61e |
60 | 51.64±1.93a | 46.50±3.52b | 40.94±1.18c | 38.12±0.86c | 31.51±1.54d | 24.59±1.96e |
90 | 66.00±2.07a | 63.63±4.15a | 56.17±0.84b | 48.98±0.85c | 41.02±0.75d | 31.15±2.01e |
120 | 79.08±3.67a | 73.85±3.71a | 63.04±3.95b | 59.17±1.70b | 46.76±6.73c | 38.33±3.67d |
180 | 90.10±3.65a | 85.37±1.12a | 74.36±0.29b | 66.91±2.77c | 56.54±5.47d | 48.20±3.39e |
300 | 100.00±3.22a | 92.74±3.79a | 82.15±1.24b | 79.30±3.36bc | 71.69±7.20cd | 64.01±1.95d |
表4
PEP和D-PEP对α-淀粉酶活性的抑制效果"
浓度Concentration (mg·mL-1) | PEP | D-PEP | 浓度Concentration (mg·mL-1) | 阿卡波糖Acarbose | |
---|---|---|---|---|---|
0.1 | 6.64±1.28a | 4.72±1.22g | 0.02 | 21.41±1.97g | |
0.2 | -1.30±0.94b | 15.24±1.52f | 0.04 | 32.80±1.22f | |
0.4 | -2.56±1.85bc | 31.95±0.51e | 0.06 | 42.01±0.90e | |
0.6 | -5.17±2.06c | 37.22±2.90d | 0.1 | 48.20±0.39d | |
0.8 | -9.97±0.82d | 48.5±0.20c | 0.2 | 51.09±0.67d | |
1 | -20.23±2.23e | 47.06±0.28c | 0.6 | 66.47±2.77c | |
2 | -20.43±0.66e | 67.79±1.87b | 1 | 72.31±0.50b | |
4 | -19.81±3.38e | 84.08±1.79a | 4 | 93.74±2.30a |
表5
PEP和D-PEP对麦芽糖酶活性的抑制效果"
浓度Concentration (mg·mL-1) | PEP | D-PEP | 浓度Concentration (mg·mL-1) | 阿卡波糖Acarbose | |
---|---|---|---|---|---|
0.1 | -10.04±0.37f | 7.89±0.37d | 0.005 | 13.44±0.31f | |
0.2 | -5.72±2.89e | 5.26±0.59e | 0.02 | 46.23±0.12e | |
0.4 | 11.11±1.86d | 9.68±0.74d | 0.04 | 58.84±0.13d | |
0.6 | 16.95±2.00c | 13.82±0.39c | 0.06 | 67.62±1.64c | |
0.8 | 17.81±0.43c | 14.08±2.06c | 0.1 | 89.69±1.46b | |
1 | 19.83±0.82c | 18.12±0.33b | 0.2 | 92.13±2.27ab | |
2 | 32.82±2.93b | 19.73±0.64ab | 0.4 | 92.51±0.59a | |
4 | 77.20±2.71a | 20.58±1.20a | 0.6 | 93.48±1.32a |
表6
PEP和D-PEP对α-葡萄糖苷酶活性的抑制效果"
浓度Concentration (mg·mL-1) | PEP | D-PEP | 浓度Concentration (mg·mL-1) | 阿卡波糖Acarbose | |
---|---|---|---|---|---|
0.1 | 5.3±1.91g | 44.73±0.92h | 0.005 | 32.66± 0.89f | |
0.2 | 10.74±1.98f | 58.86±0.83g | 0.01 | 61.98±1.79e | |
0.4 | 27.84±3.08e | 67.67±1.19f | 0.02 | 78.19±0.94d | |
0.6 | 35.90±0.15d | 78.45±0.69e | 0.04 | 89.93±0.13c | |
0.8 | 42.61±0.48c | 81.42±0.82d | 0.06 | 91.92±0.01b | |
1 | 44.44±0.72c | 84.18±0.61c | 0.1 | 99.12±0.07a | |
2 | 65.96±0.67b | 91.23±0.19b | 0.2 | 99.45±0.06a | |
4 | 78.91±0.51a | 95.58±0.12a | 0.4 | 99.79±0.03a |
[1] |
HYDER M S, DUTTA S D. Mushroom-derived polysaccharides as antitumor and anticancer agent: A concise review. Biocatalysis and Agricultural Biotechnology, 2021, 35: 102085. doi: 10.1016/j.bcab.2021.102085.
doi: 10.1016/j.bcab.2021.102085 |
[2] |
SYNYTSYA A, MÍČKOVÁ K, SYNYTSYA A, JABLONSKÝ I, SPĚVÁČEK J, ERBAN V, KOVÁŘÍKOVÁ E, ČOPÍKOVÁ J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers, 2009, 76(4): 548-556. doi: 10.1016/j.carbpol.2008.11.021.
doi: 10.1016/j.carbpol.2008.11.021 |
[3] |
ZHANG C, SONG X L, CUI W J, YANG Q H. Antioxidant and anti-ageing effects of enzymatic polysaccharide from Pleurotus eryngii residue. International Journal of Biological Macromolecules, 2021, 173: 341-350. doi: 10.1016/j.ijbiomac.2021.01.030.
doi: 10.1016/j.ijbiomac.2021.01.030 |
[4] |
XU N, GAO Z, ZHANG J J, JING H J, LI S S, REN Z Z, WANG S X, JIA L. Hepatoprotection of enzymatic-extractable mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. Carbohydr Polym, 2017, 157: 196-206. doi: 10.1016/j.carbpol.2016.09.082.
doi: 10.1016/j.carbpol.2016.09.082 |
[5] |
KHURSHEED R, SINGH S K, WADHWA S, GULATI M, AWASTHI A. Therapeutic potential of mushrooms in diabetes mellitus: role of polysaccharides. International Journal of Biological Macromolecules, 2020, 164: 1194-1205. doi: 10.1016/j.ijbiomac.2020.07.145.
doi: S0141-8130(20)33908-8 pmid: 32693144 |
[6] |
LI S Q, SHAH N P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chemistry, 2014, 165: 262-270. doi: 10.1016/j.foodchem.2014.05.110.
doi: 10.1016/j.foodchem.2014.05.110 |
[7] |
ABREU H, ZAVADINACK M, SMIDERLE F R, CIPRIANI T R, CORDEIRO L M C, IACOMINI M. Polysaccharides from Pleurotus eryngii: Selective extraction methodologies and their modulatory effects on THP-1 macrophages. Carbohydrate Polymers, 2021, 252: 117177. doi: 10.1016/j.carbpol.2020.117177.
doi: 10.1016/j.carbpol.2020.117177 |
[8] |
CHAIYAMA V, KEAWSOMPONG S, LEBLANC J G, DE MORENO DE LEBLANC A, CHATEL J M, CHANPUT W. Action modes of the immune modulating activities of crude mushroom polysaccharide from Phallus atrovolvatus. Bioactive Carbohydrates and Dietary Fibre, 2020, 23: 100216. doi: 10.1016/j.bcdf.2020.100216.
doi: 10.1016/j.bcdf.2020.100216 |
[9] | 陈玥彤, 张闪闪, 李文意, 于文浩, 赵晓芳, 刘婷婷. 黑木耳多糖的磷酸化修饰、结构表征及体外降糖活性. 食品科学, 2022, 43(8): 29-35. |
CHEN Y T, ZHANG S S, LI W Y, YU W H, ZHAO X F, LIU T T. Structural characterization and hypoglycemic effect in vitro of phosphorylated Auricularia auriculata polysaccharide. Food Science, 2022, 43(8): 29-35. (in Chinese) | |
[10] | 汪梦雯. 灵芝、香菇和茯茶多糖的提取、结构表征及降糖活性研究[D]. 西安: 陕西科技大学, 2021. |
WANG M W. Optimization of extraction technology and biological activity of polysaccharides from Ganoderma lucidum, Lentinus edodes and Fu brick tea[D]. Xi’an: Shaanxi University of Science and Technology, 2021. (in Chinese) | |
[11] |
MAO Y, MAO J, MENG X Y. Extraction optimization and bioactivity of exopolysaccharides from Agaricus bisporus. Carbohydrate Polymers, 2013, 92(2): 1602-1607. doi: 10.1016/j.carbpol.2012.11.017.
doi: 10.1016/j.carbpol.2012.11.017 |
[12] |
ZHENG X M, SUN H Q, WU L R, KONG X R, SONG Q Y, ZHU Z Y. Structural characterization and inhibition on α-glucosidase of the polysaccharides from fruiting bodies and mycelia of Pleurotus eryngii. International Journal of Biological Macromolecules, 2020, 156: 1512-1519. doi: 10.1016/j.ijbiomac.2019.11.199.
doi: 10.1016/j.ijbiomac.2019.11.199 |
[13] | 张国锁, 张淑红, 张运峰, 申书侃, 范永山. 杏鲍菇多糖对糖尿病小鼠的降血糖作用. 中国食用菌, 2019, 38(1): 38-40, 57. |
ZHANG G S, ZHANG S H, ZHANG Y F, SHEN S K, FAN Y S. Hypoglycemic effect of Pleurotus eryngii polysaccharides on diabetic mice. Edible Fungi of China, 2019, 38(1): 38-40, 57. (in Chinese) | |
[14] |
AZEEM U, SHRI R, DHINGRA G S. In vitro and in vivo antihyperglycemic activities of medicinal mushrooms (Agaricomycetes) from India. International Journal of Medicinal Mushrooms, 2021, 23(2): 29-41. doi: 10.1615/intjmedmushrooms.2021037630.
doi: 10.1615/intjmedmushrooms.2021037630 |
[15] |
FENG H, ZHANG S J, WAN J M F, GUI L F, RUAN M C, LI N, ZHANG H Y, LIU Z G, WANG H L. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice. Carbohydr Polym, 2018, 200: 144-153. doi: 10.1016/j.carbpol.2018.07.086.
doi: 10.1016/j.carbpol.2018.07.086 |
[16] |
WANG C, GAO X D, SANTHANAM R K, CHEN Z Q, CHEN Y, XU L L, WANG C L, FERRI N, CHEN H X. Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, ɑ-amylase, ɑ-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells. Food and Chemical Toxicology, 2018, 116: 335-345. doi: 10.1016/j.fct.2018.04.047.
doi: 10.1016/j.fct.2018.04.047 |
[17] |
MA G X, XU Q, DU H J, MUINDE KIMATU B, SU A X, YANG W J, HU Q H, XIAO H. Characterization of polysaccharide from Pleurotus eryngii during simulated gastrointestinal digestion and fermentation. Food Chemistry, 2022, 370: 131303. doi: 10.1016/j.foodchem.2021.131303.
doi: 10.1016/j.foodchem.2021.131303 |
[18] |
LI B, YANG W, NIE Y Y, KANG F F, GOFF H D, CUI S W. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 2019, 94: 48-56. doi: 10.1016/j.foodhyd.2019.02.042.
doi: 10.1016/j.foodhyd.2019.02.042 |
[19] |
WANG T L, LIANG X H, RAN J J, SUN J L, JIAO Z G, MO H Z. Response surface methodology for optimisation of soluble dietary fibre extraction from sweet potato residue modified by steam explosion. International Journal of Food Science & Technology, 2017, 52(3): 741-747. doi: 10.1111/ijfs.13329.
doi: 10.1111/ijfs.13329 |
[20] |
KUREK M A, KARP S, WYRWISZ J, NIU Y G. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocolloids, 2018, 85: 321-330. doi: 10.1016/j.foodhyd.2018.07.021.
doi: 10.1016/j.foodhyd.2018.07.021 |
[21] |
NSOR-ATINDANA J, DOUGLAS GOFF H, LIU W, CHEN M S, ZHONG F. The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Carbohydrate Polymers, 2018, 200: 436-445. doi: 10.1016/j.carbpol.2018.07.088.
doi: 10.1016/j.carbpol.2018.07.088 |
[22] |
XU Y Q, NIU X J, LIU N Y, GAO Y K, WANG L B, XU G, LI X G, YANG Y. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits. Food Chemistry, 2018, 243: 26-35. doi: 10.1016/j.foodchem.2017.09.107.
doi: 10.1016/j.foodchem.2017.09.107 |
[23] |
LI Y F, ZHANG X M, WANG R H, HAN L, HUANG W, SHI H, WANG B H, LI Z Q, ZOU S L. Altering the inhibitory kinetics and molecular conformation of maltase by Tangzhiqing (TZQ), a natural α-glucosidase inhibitor. BMC Complementary Medicine and Therapies, 2020, 20(1): 350. doi: 10.1186/s12906-020-03156-3.
doi: 10.1186/s12906-020-03156-3 pmid: 33208112 |
[24] |
QIN G Y X, XU W, LIU J Q, ZHAO L Y, CHEN G T. Purification, characterization and hypoglycemic activity of glycoproteins obtained from pea (Pisum sativum L.). Food Science and Human Wellness, 2021, 10(3): 297-307. doi: 10.1016/j.fshw.2021.02.021.
doi: 10.1016/j.fshw.2021.02.021 |
[25] |
WU L R, SUN H Q, HAO Y L, ZHENG X M, SONG Q Y, DAI S H, ZHU Z Y. Chemical structure and inhibition on α-glucosidase of the polysaccharides from Cordyceps militaris with different developmental stages. International Journal of Biological Macromolecules, 2020, 148: 722-736. doi: 10.1016/j.ijbiomac.2020.01.178.
doi: 10.1016/j.ijbiomac.2020.01.178 |
[26] |
LV Q Q, CAO J J, LIU R, CHEN H Q. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chemistry, 2021, 341: 128218. doi: 10.1016/j.foodchem.2020.128218.
doi: 10.1016/j.foodchem.2020.128218 |
[27] |
FERRER-GALLEGO R, GONÇALVES R, RIVAS-GONZALO J C, ESCRIBANO-BAILÓN M T, DE FREITAS V. Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception. Food Chemistry, 2012, 135(2): 651-658. doi: 10.1016/j.foodchem.2012.04.123.
doi: 10.1016/j.foodchem.2012.04.123 |
[28] |
ZHAO M M, BAI J W, BU X Y, YIN Y T, WANG L B, YANG Y, XU Y Q. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydrate Polymers, 2021, 259: 117729. doi: 10.1016/j.carbpol.2021.117729.
doi: 10.1016/j.carbpol.2021.117729 |
[29] |
ZHANG M Q, YANG R J, YU S H, ZHAO W. A novel ɑ-glucosidase inhibitor polysaccharide from Sargassum fusiforme. International Journal of Food Science and Technology, 2022, 57(1): 67-77. doi: 10.1111/ijfs.151.
doi: 10.1111/ijfs.151 |
[30] |
WANG M T, SHI J Y, WANG L, HU Y Q, YE X Q, LIU D H, CHEN J C. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic ɑ-amylase. International Journal of Biological Macromolecules, 2018, 120: 2589-2596. doi: 10.1016/j.ijbiomac.2018.09.035.
doi: 10.1016/j.ijbiomac.2018.09.035 |
[31] |
MAITY P, SEN I K, CHAKRABORTY I, MONDAL S, BAR H, BHANJA S K, MANDAL S, MAITY G N. Biologically active polysaccharide from edible mushrooms: A review. International Journal of Biological Macromolecules, 2021, 172: 408-417. doi: 10.1016/j.ijbiomac.2021.01.081.
doi: 10.1016/j.ijbiomac.2021.01.081 pmid: 33465360 |
[32] |
LEONG Y K, YANG F C, CHANG J S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydrate Polymers, 2021, 251: 117006. doi: 10.1016/j.carbpol.2020.117006.
doi: 10.1016/j.carbpol.2020.117006 |
[33] |
PALANISAMY M, ALDARS-GARCíA L, GIL-RAMíREZ A, RUIZ-RODRíGUEZ A, MARíN F R, REGLERO G, SOLER-RIVAS C. Pressurized water extraction of β-glucan enriched fractions with bile acids-binding capacities obtained from edible mushrooms. Biotechnology Progress, 2014, 30(2): 391-400. doi: 10.1002/btpr.1865.
doi: 10.1002/btpr.1865 |
[34] |
ALZORQI I, SUDHEER S, LU T J, MANICKAM S. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity. Ultrasonics Sonochemistry, 2017, 35: 531-540. doi: 10.1016/j.ultsonch.2016.04.017.
doi: 10.1016/j.ultsonch.2016.04.017 |
[35] |
LUNN J, BUTTRISS J L. Carbohydrates and dietary fibre. Nutrition Bulletin, 2007, 32(1): 21-64. doi: 10.1111/j.1467-3010.2007.00616.x.
doi: 10.1111/j.1467-3010.2007.00616.x |
[36] |
YANG B K, KIM G N, JEONG Y T, JEONG H, MEHTA P, SONG C H. Hypoglycemic effects of exo-biopolymers produced by five different medicinal mushrooms in STZ-induced diabetic rats. Mycobiology, 2008, 36(1): 45-49. doi: 10.4489/MYCO.2008.36.1.045.
doi: 10.4489/MYCO.2008.36.1.045 |
[37] | 黄才欢, 欧仕益, 张宁, 李亚菲, 赵谋明. 膳食纤维吸附脂肪、胆固醇和胆酸盐的研究. 食品科技, 2006(5): 133-136. |
HUANG C H, OU S Y, ZHANG N, LI Y F, ZHAO M M. Research on the adsorption capacity of dietary fiber complexes for fat, cholesterol and bile acid in vitro. Food Science and Technology, 2006(5): 133-136. (in Chinese) | |
[38] |
HU J L, NIE S P, XIE M Y. Antidiabetic mechanism of dietary polysaccharides based on their gastrointestinal functions. Journal of Agricultural and Food Chemistry, 2018, 66(19): 4781-4786. doi: 10.1021/acs.jafc.7b05410.
doi: 10.1021/acs.jafc.7b05410 |
[39] |
LIU Y T, LI Y W, KE Y, LI C, ZHANG Z Q, WU Y L, HU B, LIU A P, LUO Q Y, WU W J. In vitro saliva-gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota. Carbohydrate Polymers, 2021, 251: 117041. doi: 10.1016/j.carbpol.2020.117041.
doi: 10.1016/j.carbpol.2020.117041 |
[40] |
REN S C, WAN Y, ZHU X A, LIU Z L, ZHAO W H, XIE D D, WANG S L. Influence of gardenia yellow on in vitro slow starch digestion and its action mechanism. Royal Society of Chemistry, 2022, 12(11): 6738-6747. doi: 10.1039/d1ra08276k.
doi: 10.1039/d1ra08276k |
[41] |
CHI G X, QI Y F, LI J, WANG L, HU J J. Polyoxomolybdates as α-glucosidase inhibitors: Kinetic and molecular modeling studies. Journal of Inorganic Biochemistry, 2019, 193: 173-179. doi: 10.1016/j.jinorgbio.2019.02.001.
doi: S0162-0134(18)30588-9 pmid: 30776576 |
[42] |
INOCENTE CAMONES M A, JURADO TEIXEIRA B, RAMOS LLICA E, ALVARADO CHáVEZ B, FUERTES RUITON C, CÁRDENAS MONTOYA L, RIVERA CASTILLO B. In vitro hypoglycemic activity of polysaccharides digested from Nostoc sphaericum Vaucher ex Bornet & Flahault (cushuro). Horizonte Médico (Lima), 2019, 19(1): 26-31. doi: 10.24265/horizmed.2019.v19n1.05.
doi: 10.24265/horizmed.2019.v19n1.05 |
[43] |
JIA Y N, XUE Z H, WANG Y J, LU Y P, LI R L, LI N N, WANG Q R, ZHANG M, CHEN H X. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydrate Polymers, 2021, 252: 117185. doi: 10.1016/j.carbpol.2020.117185.
doi: 10.1016/j.carbpol.2020.117185 |
[44] |
CAO X Y, XIA Y, LIU D, HE Y L, MU T, HUO Y P, LIU J L. Inhibitory effects of Lentinus edodes mycelia polysaccharide on α-glucosidase, glycation activity and high glucose-induced cell damage. Carbohydrate Polymers, 2020, 246: 116659. doi: 10.1016/j.carbpol.2020.116659.
doi: 10.1016/j.carbpol.2020.116659 |
[45] |
陈成. 五味子多糖提取工艺优化及其对α-葡萄糖苷酶抑制活性分析. 食品工业科技, 2022, 43(7): 248-254. doi: 10.13386/j.issn1002-0306.2021090146.
doi: 10.13386/j.issn1002-0306.2021090146 |
CHEN C. Optimization of extraction process of Schisandra chinensis polysaccharide and analysis of its inhibitory activity against α- glucosidase. Science and Technology of Food Industry, 2022, 43(7): 248-254. doi: 10.13386/j.issn1002-0306.2021090146. (in Chinese)
doi: 10.13386/j.issn1002-0306.2021090146 |
|
[46] | 任顺成, 万毅, 李林政, 潘天义. 栀子黄对淀粉消化酶的抑制动力学及相互作用研究. 中国食品学报, 2021, 21(9): 38-47. |
REN S C, WAN Y, LI L Z, PAN T Y. Studies on the inhibition kinetics and interaction mechanism of Gardenia yellowon starch digestive enzyme. Journal of Chinese Institute of Food Science and Technology, 2021, 21(9): 38-47. (in Chinese) | |
[47] | 杨丽珍. 荔枝壳多酚抑制α-葡萄糖苷酶和α-淀粉酶的作用及其机制研究[D]. 广州: 华南农业大学, 2017. |
YANG L Z. Inhibitory effect of phenolics from litchi pericarp on α-glycosidase and α-amylase and their underling mechanism[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese) | |
[48] |
杜沁岭, 杨芳, 徐文, 缪婷, 曹俊杰, 贾冬英. 银耳多糖对淀粉消化酶的抑制作用及其机理研究. 食品工业科技, 2022, 43(2): 120-125. doi: 10.13386/j.issn1002-0306.2021060084.
doi: 10.13386/j.issn1002-0306.2021060084 |
DU Q L, YANG F, XU W, MIAO T, CAO J J, JIA D Y. Inhibitory effect of Tremella fuciformis polysaccharide on starch digestive enzymes and its action mechanism. Science and Technology of Food Industry, 2022, 43(2): 120-125. doi: 10.13386/j.issn1002-0306.2021060084. (in Chinese)
doi: 10.13386/j.issn1002-0306.2021060084 |
[1] | 王萱萱,刘春宇,谢贝昱,张淑淑,王丹阳,朱振元. 碱提甘蔗皮多糖提取工艺、初步结构及其对α-葡萄糖苷酶的抑制作用[J]. 中国农业科学, 2021, 54(12): 2653-2665. |
|