中国农业科学 ›› 2022, Vol. 55 ›› Issue (24): 4895-4911.doi: 10.3864/j.issn.0578-1752.2022.24.009
收稿日期:
2022-03-04
接受日期:
2022-04-24
出版日期:
2022-12-16
发布日期:
2023-01-04
通讯作者:
张蔚
作者简介:
由玉婉,E-mail:基金资助:
YOU YuWan(),ZHANG Yu,SUN JiaYi,ZHANG Wei()
Received:
2022-03-04
Accepted:
2022-04-24
Online:
2022-12-16
Published:
2023-01-04
Contact:
Wei ZHANG
摘要:
【目的】从‘月月粉’月季全基因组中鉴定NAC家族成员,并进行生物信息学和表达模式分析,为研究‘月月粉’NAC的潜在功能提供理论基础,筛选可能参与皮刺发育的候选基因。【方法】以拟南芥NAC氨基酸序列为参考,利用双向Blast及HMM结构域检索筛选RcNAC;对筛选成员进行理化性质、亚细胞定位、序列特征、顺式元件和系统进化分析;基于已释放转录组数据,分析RcNAC在不同组织器官,和不同逆境处理条件下的表达特性;同时通过‘月月粉’不同发育阶段皮刺组织转录组测序,筛选与皮刺发育可能相关的RcNAC。【结果】共鉴定得到116个RcNACs,均含有完整典型的NAM保守结构域,其编码蛋白包含69—713个氨基酸,等电点从4.43—9.54,分子质量从7.87—79.99 kD,81个RcNACs被预测定位于细胞核内;115个RcNACs在7条染色体上不均匀分布,1个RcNAC未明确位置信息;系统进化树分析将AtNACs、OsNACs和RcNACs聚为21类;在不同组织器官中,116个RcNACs表达模式各异,遭受水胁迫和感染灰霉病之后,31个RcNACs表达量发生变化;在衰老的花组织中,6个RcNACs表达量上升;皮刺转录组数据中检测到53个RcNACs,其中26个RcNACs为差异表达基因。【结论】基于已有转录组数据分析,RcNACs协同调控植物组织发育及逆境胁迫响应;结合皮刺转录组数据,部分成员可能参与皮刺细胞增殖、次生细胞壁生物合成及细胞程序性死亡等过程,可作为皮刺发育相关候选基因进行深入研究。
由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911.
YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush[J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
表1
qRT-PCR引物序列"
基因名称 Gene name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') | 基因ID Gene ID | 基因注释 Gene annotation |
---|---|---|---|---|
RcNAC001 | TGATGAAGGGACAAAGTGGGC | GCTCGATCTATCTTGGCCATT | RchiOBHmChr0c19g0500091 | NAC |
RcNAC010 | TTCGGTGACGGGCAATTCTTA | CTGCTCAACCAGAGGTTCACT | RchiOBHmChr1g0334901 | NAC |
RcNAC012 | CGACAACACCAGCAGCATAAC | CAAAAGCTCCCTCCTGATCGT | RchiOBHmChr1g0360971 | NAC |
RcNAC057 | TGGGAGTAGGACCGATTGGAT | GATGAAGAACAAGGCGCAAGG | RchiOBHmChr4g0429461 | NAC |
RcNAC063 | AATGTGGTATGGGCACTCCAG | TCCCTATTCTGGCCTCCTTGA | RchiOBHmChr5g0009331 | NAC |
RcNAC098 | GCTTCTCCAACCATGAGTCCA | GTTTTCAAGCAAGGCCCTCAG | RchiOBHmChr7g0181751 | NAC |
RcNAC111 | CTGTGTGAGGGTAAGCAGTGG | CGACACAACACGTATCCGCTA | RchiOBHmChr7g0225481 | NAC |
RcGST | CCTCAGATCCCAAGCCAAGTT | TCGGGCACTCTGGTTCAATAC | RchiOBHmChr5g0027341 | 谷胱甘肽转移酶Glutathione transferase |
RcTGL | CAGGCATCAGGGAAGAACCTT | CCCAAACCATACACACCCGTA | RchiOBHmChr2g0141171 | 三酰基甘油脂肪酶Triacylglycerol lipase |
RcWRKY | CTGAGGTAGCTTTGCCTCACA | GTGTTTCCCCTCGTATGTGGT | RchiOBHmChr2g0166991 | WRKY |
RcbHLH | GGAAAAACGACCCCGGAAAAG | GAAGACGTTCGGGACTCTTGT | RchiOBHmChr7g0209751 | bHLH |
RcEXPA | TTAGTGGTGGACACCTTGCTG | CAAAATGTCCTGGCCCAAACC | RchiOBHmChr6g0279781 | EXPA |
RcNAC032 | GTGGTGGCACTGGAATTAGGA | TGTGATATTTGGTGTGGCGGA | RchiOBHmChr1g0383091 | NAC |
RcNAC035 | TGGACCGGAATAAAGTGGCAA | CGGCGAGAATACATGATCCGA | RchiOBHmChr2g0122871 | NAC |
RcNAC052 | GAAAGCTCTGCGACTCCAAAC | TGTTGTTGTCTCCTCCAGCAA | RchiOBHmChr3g0482951 | NAC |
表2
‘月月粉’NAC家族成员基本信息"
分组 Group | 基因数 Gene | 范围 Range | 亚细胞定位 Subcellular localization | ||
---|---|---|---|---|---|
蛋白长度 Length (aa) | 等电点 pI | 分子质量 Molecular weight (kD) | |||
A | 5 | 292-494 | 5.07-9.16 | 32.8-55.76 | 细胞核 Nucleus |
C | 22 | 75-573 | 4.87-9.08 | 8.69-64.42 | 细胞核 Nucleus:14; 液泡 Cytosol:3; 内质网 Endoplasmic reticulum:3; 叶绿体 Chloroplast:2 |
D | 4 | 382-617 | 4.66-6.01 | 42.85-67.7 | 细胞核 Nucleus:2; 叶绿体 Chloroplast:2 |
E | 4 | 268-688 | 5.04-5.62 | 30.46-78.38 | 细胞核 Nucleus:2; 细胞膜 Plasma membrane:1; 过氧化物酶体 Peroxisome:1 |
F | 2 | 577-713 | 5-5.05 | 64.55-79.99 | 细胞核 Nucleus |
G | 8 | 184-474 | 5.97-9.78 | 20.48-52.9 | 细胞核 Nucleus |
H | 2 | 287-341 | 5.67-6.45 | 33.02-38.55 | 细胞核 Nucleus:1; 叶绿体 Chloroplast:1 |
I | 8 | 179-421 | 5.07-9.35 | 21.03-47.55 | 细胞核 Nucleus:5; 过氧化物酶体 Peroxisome:1; 叶绿体 Chloroplast:2 |
J | 2 | 225-596 | 4.9-9.12 | 26.13-67.31 | 细胞核 Nucleus:1; 叶绿体 Chloroplast:1 |
L | 3 | 150-379 | 6.4-8.55 | 17.19-25.83 | 细胞核 Nucleus:1; 叶绿体 Chloroplast:1; 液泡 Cytosol:1 |
M | 3 | 256-291 | 5.91-6.55 | 28.94-32.66 | 细胞核 Nucleus |
N | 8 | 166-467 | 6.18-9.54 | 19.44-53.02 | 细胞核 Nucleus:6; 液泡 Cytosol:2 |
O | 2 | 289-315 | 6.32-8.13 | 32.96-36.17 | 细胞核 Nucleus |
P | 1 | 352 | 8.38 | 39.75 | 细胞核 Nucleus |
Q | 7 | 162-552 | 5.68-9.54 | 18.63-62.59 | 细胞核 Nucleus:5; 液泡 Cytosol:1; 叶绿体 Chloroplast:1 |
R | 5 | 197-251 | 4.73-9.42 | 22.55-28.29 | 细胞核 Nucleus:4; 液泡 Cytosol:1 |
S | 5 | 172-658 | 5.4-9.47 | 19.83-76.46 | 细胞核 Nucleus:2; 液泡 Cytosol:2; 叶绿体 Chloroplast:1 |
T | 25 | 69-595 | 4.43-9.41 | 7.87-66.08 | 细胞核 Nucleus:17; 液泡 Cytosol:5; 叶绿体 Chloroplast:2; 高尔基体 Golgi apparatus:1 |
[1] |
ZHOU N N, SIMONNEAU F, THOUROUDE T, OYANT L H, FOUCHER F. Morphological studies of rose prickles provide new insights. Horticulture Research, 2021, 8(1): 221. doi: 10.1038/s41438-021-00689-7.
doi: 10.1038/s41438-021-00689-7 pmid: 34556626 |
[2] |
SINGH K B. Transcriptional regulation in plants: The importance of combinatorial control. Plant Physiology, 1998, 118(4): 1111-1120. doi: 10.1104/pp.118.4.1111.
doi: 10.1104/pp.118.4.1111 pmid: 9847085 |
[3] |
ZHANG Y, ZHAO M J, ZHU W, SHI C M, BAO M Z, ZHANG W. Nonglandular prickle formation is associated with development and secondary metabolism-related genes in Rosa multiflora. Physiologia Plantarum, 2021, 173(3): 1147-1162. doi: 10.1111/ppl.13510.
doi: 10.1111/ppl.13510 |
[4] |
SOUER E, VAN HOUWELINGEN A, KLOOS D, MOL J, KOES R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170. doi: 10.1016/s0092-8674(00)81093-4.
doi: 10.1016/s0092-8674(00)81093-4 |
[5] |
OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79-87. doi: 10.1016/j.tplants.2004.12.010.
doi: 10.1016/j.tplants.2004.12.010 pmid: 15708345 |
[6] |
张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能. 植物生理学报, 2019, 55(7): 915-924. doi: 10.13592/j.cnki.ppj.2019.0107.
doi: 10.13592/j.cnki.ppj.2019.0107 |
ZHANG H Z, BAI X Q, ZENG Y L. Biological functions of plant NAC transcription factors. Plant Physiology Journal, 2019, 55(7): 915-924. doi: 10.13592/j.cnki.ppj.2019.0107. (in Chinese)
doi: 10.13592/j.cnki.ppj.2019.0107 |
|
[7] |
JENSEN M K, KJAERSGAARD T, NIELSEN M M, GALBERG P, PETERSEN K, O'SHEA C, SKRIVER K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 2010, 426(2): 183-196. doi: 10.1042/BJ20091234.
doi: 10.1042/BJ20091234 |
[8] |
OOKA H, SATOH K, DOI K, NAGATA T, OTOMO Y, MURAKAMI K, MATSUBARA K, OSATO N, KAWAI J, CARNINCI P, HAYASHIZAKI Y, SUZUKI K, KOJIMA K, TAKAHARA Y, YAMAMOTO K, KIKUCHI S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10(6): 239-247. doi: 10.1093/dnares/10.6.239.
doi: 10.1093/dnares/10.6.239 |
[9] |
SUN H, HU M L, LI J Y, CHEN L, LI M, ZHANG S Q, ZHANG X L, YANG X Y. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biology, 2018, 18(1): 150. doi: 10.1186/s12870-018-1367-5.
doi: 10.1186/s12870-018-1367-5 pmid: 30041622 |
[10] |
SUN L, LIU L P, WANG Y Z, YANG L, WANG M J, LIU J X. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta, 2020, 252(6): 95. doi: 10.1007/s00425-020-03502-2.
doi: 10.1007/s00425-020-03502-2 |
[11] |
YANG J H, LEE K H, DU Q, YANG S, YUAN B J, QI L Y, WANG H Z. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. New Phytologist, 2020, 226(1): 59-74. doi: 10.1111/nph.16289.
doi: 10.1111/nph.16289 pmid: 31660587 |
[12] |
ZHONG R O, LEE C, HAGHIGHAT M, YE Z H. Xylem vessel- specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements. New Phytologist, 2021, 231(4): 1496-1509. doi: 10.1111/nph.17425.
doi: 10.1111/nph.17425 |
[13] |
FANG S, SHANG X G, YAO Y, LI W X, GUO W Z. NST- and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton. Plant Science, 2020, 301: 110657. doi: 10.1016/j.plantsci.2020.110657.
doi: 10.1016/j.plantsci.2020.110657 |
[14] | 文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展. 西南林业大学学报(自然科学版), 2021, 41(2): 182-188. |
WEN J, WANG C T, YANG Y P. Advances in regulation of xylem secondary cell wall thickening in plants. Journal of Southwest Forestry University (Natural Science Edition), 2021, 41(2): 182-188. (in Chinese) | |
[15] |
CHEN D D, CHAI S C, MCINTYRE C L, XUE G P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Reports, 2018, 37(2): 225-237. doi: 10.1007/s00299-017-2224-y.
doi: 10.1007/s00299-017-2224-y pmid: 29079898 |
[16] |
LIU X W, WANG T, BARTHOLOMEW E, BLACK K, DONG M M, ZHANG Y Q, YANG S, CAI Y L, XUE S D, WENG Y Q, REN H Z. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Horticulture Research, 2018, 5: 31. doi: 10.1038/s41438-018-0036-z.
doi: 10.1038/s41438-018-0036-z |
[17] |
MEISRIMLER C N, PELGROM A J E, OUD B, OUT S, VAN DEN ACKERVEKEN G. Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce. Plant Journal, 2019, 99(6): 1098-1115. doi: 10.1111/tpj.14383.
doi: 10.1111/tpj.14383 |
[18] |
朱自果, 阴启忠, 张庆田, 韩真, 张倩, 李勃. 欧洲葡萄‘粉红亚都蜜’NAC基因DRL1负向调节植物抗旱性. 园艺学报, 2020, 47(12): 2290-2300. doi: 10.16420/j.issn.0513-353x.2020-0185.
doi: 10.16420/j.issn.0513-353x.2020-0185 |
ZHU Z G, YIN Q Z, ZHANG Q T, HAN Z, ZHANG Q, LI B. DRL1,a NAC gene from Vitis vinifera Yatomo Rose, negatively regulates the drought tolerance. Acta Horticulturae Sinica, 2020, 47(12): 2290-2300. doi: 10.16420/j.issn.0513-353x.2020-0185. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0185 |
|
[19] |
李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征. 浙江农业学报, 2022, 34(4): 766-780.
doi: 10.3969/j.issn.1004-1524.2022.04.13 |
LI X L, ZHANG R, HAO L L, WANG H. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2022.04.13 |
|
[20] |
JIN J F, WANG Z Q, HE Q Y, WANG J Y, LI P F, XU J M, ZHENG S J, FAN W, YANG J L. Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress. BMC Genomics, 2020, 21(1): 288. doi: 10.1186/s12864-020-6689-7.
doi: 10.1186/s12864-020-6689-7 pmid: 32264854 |
[21] |
RAYMOND O, GOUZY J, JUST J, BADOUIN H, VERDENAUD M, LEMAINQUE A, VERGNE P, MOJA S, CHOISNE N, PONT C, CARRERE S, CAISSARD J C, COULOUX A, COTTRET L, AURY J M, SZECSI J, LATRASSE D, MADOUI M A, FRANCOIS L, FU X P, et al. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 2018, 50(6): 772-777. doi: 10.1038/s41588-018-0110-3.
doi: 10.1038/s41588-018-0110-3 pmid: 29713014 |
[22] |
HIBRAND S L, RUTTINK T, HAMAMA L, KIROV I, LAKHWANI D, ZHOU N N, BOURKE P M, DACCORD N, LEUS L, SCHULZ D, VAN DE GEEST H, HESSELINK T, VAN LAERE K, DEBRAY K, BALZERGUE S, THOUROUDE T, CHASTELLIER A, JEAUFFRE J, VOISINE L, GAILLARD S, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants, 2018, 4(7): 473-484. doi: 10.1038/s41477-018-0166-1.
doi: 10.1038/s41477-018-0166-1 |
[23] |
TIAN F, YANG D C, MENG Y Q, JIN J P, GAO G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Research, 2020, 48(D1): D1104-D1113. doi: 10.1093/nar/gkz1020.
doi: 10.1093/nar/gkz1020 |
[24] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[25] |
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[26] |
LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021, 49(W1): W293-W296. doi: 10.1093/nar/gkab301.
doi: 10.1093/nar/gkab301 |
[27] |
BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J, LI W W, NOBLE W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(Web Server issue): W202-W208. doi: 10.1093/nar/gkp335.
doi: 10.1093/nar/gkp335 |
[28] |
DUBOIS A, CARRERE S, RAYMOND O, POUVREAU B, COTTRET L, ROCCIA A, ONESTO J P, SAKR S, ATANASSOVA R, BAUDINO S, FOUCHER F, LE BRIS M, GOUZY J, BENDAHMANE M. Transcriptome database resource and gene expression atlas for the rose. BMC Genomics, 2012, 13: 638. doi: 10.1186/1471-2164-13-638.
doi: 10.1186/1471-2164-13-638 pmid: 23164410 |
[29] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8.
doi: 10.1186/s13059-014-0550-8 |
[30] |
SU H Y, ZHANG S Z, YUAN X W, CHEN C T, WANG X F, HAO Y J. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple. Plant Physiology Biochemistry, 2013, 71: 11-21. doi: 10.1016/j.plaphy.2013.06.022.
doi: 10.1016/j.plaphy.2013.06.022 |
[31] |
AHMAD M, YAN X H, LI J Z, YANG Q S, JAMIL W, TENG Y W, BAI S L. Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. BMC Plant Biology, 2018, 18(1): 214. doi: 10.1186/s12870-018-1427-x.
doi: 10.1186/s12870-018-1427-x pmid: 30285614 |
[32] |
WANG Z Q, NI L J, LIU D N, FU Z K, HUA J F, LU Z G, LIU L Q, YIN Y L, LI H G, GU C S. Genome-wide identification and characterization of NAC family in Hibiscus hamabo Sieb. et Zucc. under various abiotic stresses. International Journal of Molecular Sciences, 2022, 23(6): 3055. doi: 10.3390/ijms23063055.
doi: 10.3390/ijms23063055 |
[33] |
高文杰, 刘娇, 马祥庆, 帅鹏. 杉木NAC基因家族基因的鉴定及生物信息学分析. 中南林业科技大学学报, 2022, 42(2): 108-118. doi: 10.14067/j.cnki.1673-923x.2022.02.012.
doi: 10.14067/j.cnki.1673-923x.2022.02.012 |
GAO W J, LIU J, MA X Q, SHUAI P. ldentification and bioinformatics analysis of Chinese fir NAC gene family. Journal of Central South University of Forestry & Technology, 2022, 42(2): 108-118. doi: 10.14067/j.cnki.1673-923x.2022.02.012. (in Chinese)
doi: 10.14067/j.cnki.1673-923x.2022.02.012 |
|
[34] |
SHAN X M, YANG K B, XU X R, ZHU C L, GAO Z M. Genome-wide investigation of the NAC gene family and its potential association with the secondary cell wall in Moso Bamboo. Biomolecules, 2019, 9(10): 609. doi: 10.3390/biom9100609.
doi: 10.3390/biom9100609 |
[35] |
WANG Q, GUO C, LI Z Y, SUN J H, DENG Z C, WEN L C, LI X X, GUO Y F. Potato NAC transcription factor StNAC053 enhances salt and drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2021, 22(5): 2568. doi: 10.3390/ijms22052568.
doi: 10.3390/ijms22052568 |
[36] |
ZHANG X, LONG Y, CHEN X X, ZHANG B L, XIN Y F, LI L Y, CAO S L, LIU F H, WANG Z G, HUANG H, ZHOU D G, XIA J X. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biology, 2021, 21(1): 546. doi: 10.1186/s12870-021-03333-7.
doi: 10.1186/s12870-021-03333-7 |
[37] |
曹瑞兰, 李知青, 欧阳雯婷, 胡冬南, 周增亮, 苏文娟, 陈霞, 刘娟. 油茶NAC基因鉴定及对干旱胁迫响应分析. 江西农业大学学报, 2021, 43(6): 1357-1370. doi: 10.13836/j.jjau.2021145.
doi: 10.13836/j.jjau.2021145 |
CAO R L, LI Z Q, OUYANG W T, HU D N, ZHOU Z L, SU W J, CHEN X, LIU J. Identification of NAC Gene in Camellia oleifera and Analysis of Its Response to Drought Stress. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(6): 1357-1370. doi: 10.13836/j.jjau.2021145. (in Chinese)
doi: 10.13836/j.jjau.2021145 |
|
[38] | 王佳丽, 王鹤冰, 杨慧勤, 胡若琳, 魏大勇, 汤青林, 王志敏. NAC转录因子在植物花发育中的作用. 生物工程学报, 2022, 38(8): 2687-2699. |
WANG J L, WANG H B, YANG H Q, HU R L, WEI D Y, TANG Q L, WANG Z M. The role of NAC transcription factors in flower development in plants. Chinese Journal of Biotechnology, 2022, 38(8): 2687-2699. (in Chinese) | |
[39] | 牛早柱, 赵艳卓, 陈展, 宣立锋, 牛帅科, 褚凤杰, 杨丽丽. 葡萄果实成熟相关NAC转录因子的筛选、克隆及表达分析. 果树学报, 2022, 39(7): 1137-1146. |
NIU Z Z, ZHAO Y Z, CHEN Z, XUAN L F, NIU S K, CHU F J, YANG L L. Screening, Cloning and Expression Analysis of NAC TranscriptionFactors Related to Grape Fruit ripening. Journal of Fruit Science, 2022, 39(7): 1137-1146. (in Chinese) | |
[40] |
MARTIN-PIZARRO C, VALLARINO J G, OSORIO S, MECO V, URRUTIA M, PILLET J, CASANAL A, MERCHANTE C, AMAYA I, WILLMITZER L, FERNIE A R, GIOVANNONI J J, BOTELLA M A, VALPUESTA V, POSE D. The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell, 2021, 33(5): 1574-1593. doi: 10.1093/plcell/koab070.
doi: 10.1093/plcell/koab070 |
[41] |
SWARNKAR M K, KUMAR P, DOGRA V, KUMAR S. Prickle morphogenesis in rose is coupled with secondary metabolite accumulation and governed by canonical MBW transcriptional complex. Plant Direct, 2021, 5(6): e00325. doi: 10.1002/pld3.325.
doi: 10.1002/pld3.325 |
[42] |
ZHAO C S, AVCI U, GRANT E H, HAIGLER C H, BEERS E P. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant Journal, 2008, 53(3): 425-436. doi: 10.1111/j.1365-313X.2007.03350.x.
doi: 10.1111/j.1365-313X.2007.03350.x |
[43] | SAKAMOTO S, MITSUDA N. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. Plant & cell physiology, 2015, 56(2): 299-310. |
[44] | 李媛, 陈金焕, 金曌, 侯景丫, 姜玉松, 邢海涛. 毛果杨NAC128基因在次生壁形成中的功能. 林业科学, 2020, 56(11): 62-72. |
LI Y, CHEN J H, JIN Z, HOU J Y, JIANG Y S, XING H T. Functions of NAC128 Gene from Populus trichocarpa in Secondary Cell Wall Formation. Scientia Silvae Sinicae, 2020, 56(11): 62-72. (in Chinese) | |
[45] |
GUO Y F, GAN S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal, 2006, 46(4): 601-612. doi: 10.1111/j.1365-313X.2006.02723.x.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597 |
[46] |
KOU X H, WATKINS C B, GAN S S. Arabidopsis AtNAP regulates fruit senescence. Journal of Experimental Botany, 2012, 63(17): 6139-6147. doi: 10.1093/jxb/ers266.
doi: 10.1093/jxb/ers266 |
[1] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[2] | 吕士凯, 马小龙, 张敏, 邓平川, 陈春环, 张宏, 刘新伦, 吉万全. 小麦TaNAC基因基于可变剪切和microRNA的转录后调控分析[J]. 中国农业科学, 2021, 54(22): 4709-4727. |
[3] | 龙琴,杜美霞,龙俊宏,何永睿,邹修平,陈善春. 转录因子CsWRKY61对柑橘溃疡病抗性的影响[J]. 中国农业科学, 2020, 53(8): 1556-1571. |
[4] | 郝树琳,陈宏伟,廖芳丽,李莉,刘昌燕,刘良军,万正煌,沙爱华. 基于盐胁迫转录组信息的蚕豆F-box基因家族分析[J]. 中国农业科学, 2020, 53(17): 3443-3454. |
[5] | 宋杨,刘红弟,王海波,张红军,刘凤之. 越橘VcNAC072克隆及其促进花青素积累的功能分析[J]. 中国农业科学, 2019, 52(3): 503-511. |
[6] | 薛红丽,杨军军,汤沙,智慧,王蕊,贾冠清,乔治军,刁现民. 谷子穗顶端败育突变体sipaa1的表型分析和基因定位[J]. 中国农业科学, 2018, 51(9): 1627-1640. |
[7] | 刘宏祥,徐文娟,朱春红,陶志云,宋卫涛,章双杰,李慧芳. 鸭胚胎发育中后期胸肌发育阻滞的RNA-seq分析[J]. 中国农业科学, 2018, 51(22): 4373-4386. |
[8] | 王成花,孙诗晴,徐巨龙,赵小龙,薛超彬. 抗氟苯虫酰胺小菜蛾差异表达基因及其通路[J]. 中国农业科学, 2018, 51(11): 2106-2115. |
[9] | 严莉,王翠平,陈建伟,乔改霞,李健. 基于转录组信息的黑果枸杞MYB转录因子家族分析[J]. 中国农业科学, 2017, 50(20): 3991-4002. |
[10] | 魏利斌, 苗红梅, 张海洋. 芝麻发育转录组分析[J]. 中国农业科学, 2012, 45(7): 1246-1256. |
|