中国农业科学 ›› 2020, Vol. 53 ›› Issue (16): 3225-3234.doi: 10.3864/j.issn.0578-1752.2020.16.003
收稿日期:
2019-10-05
接受日期:
2020-02-21
出版日期:
2020-08-16
发布日期:
2020-08-27
通讯作者:
钱伟
作者简介:
万华方,E-mail:基金资助:
WAN HuaFang(),WEI Shuai(
),FENG YuXia,QIAN Wei(
)
Received:
2019-10-05
Accepted:
2020-02-21
Online:
2020-08-16
Published:
2020-08-27
Contact:
Wei QIAN
摘要:
【目的】作为甘蓝型油菜的祖先种之一,白菜型油菜具有遗传多样性丰富、耐干旱、耐土壤瘠薄等优良特性。分析白菜型油菜的抗旱性,并以六倍体为桥梁,创造导入白菜型油菜优良抗旱性的新型甘蓝型油菜。【方法】以甘蓝型油菜和甘蓝为亲本,经杂交、胚挽救、染色体加倍,获得六倍体材料(AnAnCnCnCoCo)。以六倍体(AnAnCnCnCoCo)与白菜型油菜(ArAr)为亲本,杂交获得新型甘蓝型油菜(AnArCnCo);以PEG-6000溶液于萌发期模拟干旱处理新型甘蓝型油菜、白菜型油菜,测算种子萌发抗旱指数、相对萌发率、相对萌发势、相对根长和相对胚轴长,评价其抗旱性,并运用隶属函数法对抗旱性鉴定指标进行分析,筛选具有优良抗旱性的新型甘蓝型油菜。【结果】以11份六倍体材料和68份白菜型油菜为亲本,创建了124份新型甘蓝型油菜。新型甘蓝型油菜苗期表型介于六倍体和白菜型油菜之间。所选六倍体材料的染色体数目为56条,花粉育性约90%,合成的新型甘蓝型油菜的染色体数目为38条,花粉育性约80%。选取59份长势优良的新型甘蓝型油菜、7份六倍体材料、10份白菜型油菜以及20份自然甘蓝型油菜,进行主成分分析,四类材料分成三类,即六倍体材料、自然甘蓝型油菜和新型甘蓝型油菜、白菜型油菜,但自然甘蓝型油菜和新型甘蓝型油菜明显分开。以PEG-6000溶液模拟干旱,测定抗旱性指标,确定了用于白菜型油菜和新型甘蓝型油菜模拟干旱处理的PEG-6000溶液浓度,分别为200和250 g·L-1。从59份新型甘蓝型油菜中选取9份进行抗旱性鉴定,发现其中有3份新型甘蓝型油菜的抗旱性优于对照甘蓝型油菜中双11号,而且这三份新型甘蓝型油菜的抗旱性与各自的父本白菜型油菜的抗旱性呈正相关性。【结论】以具备优良抗旱性的白菜型油菜为亲本,以六倍体材料为桥梁,可创制具备优良抗旱性的新型甘蓝型油菜。
万华方,魏帅,冯宇霞,钱伟. 以六倍体(AnAnCnCnCoCo)为桥梁创制抗旱新型甘蓝型油菜(AnArCnCo)[J]. 中国农业科学, 2020, 53(16): 3225-3234.
WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge[J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
表1
油菜萌发期抗旱性相关指标主成分分析原始矩阵"
编号 Code | 类型 Type | 萌发抗旱指数 DRI | 相对萌发率 RGR | 相对萌发势 RSP | 相对根长 RRL | 相对胚轴长 RSL |
---|---|---|---|---|---|---|
9X006 | 新型甘蓝型油菜New-type B. napus | 0.262 | 0.067 | 0.069 | 0.209 | 0.106 |
9X002 | 新型甘蓝型油菜New-type B. napus | 0.543 | 0.067 | 0.000 | 0.690 | 0.133 |
9X025 | 新型甘蓝型油菜New-type B. napus | 0.798 | 0.300 | 0.296 | 0.718 | 0.135 |
9X016 | 新型甘蓝型油菜New-type B. napus | 0.392 | 0.600 | 0.615 | 0.319 | 0.173 |
9X018 | 新型甘蓝型油菜New-type B. napus | 0.824 | 0.900 | 0.827 | 0.692 | 0.249 |
9X111 | 新型甘蓝型油菜New-type B. napus | 0.483 | 0.633 | 0.393 | 0.748 | 0.162 |
9X028 | 新型甘蓝型油菜New-type B. napus | 0.591 | 0.933 | 0.933 | 0.156 | 0.109 |
9X015 | 新型甘蓝型油菜New-type B. napus | 0.637 | 0.600 | 0.533 | 0.228 | 0.151 |
9X026 | 新型甘蓝型油菜New-type B. napus | 0.380 | 0.700 | 0.633 | 0.122 | 0.109 |
中双11 ZS11 | 甘蓝型油菜B. napus | 0.800 | 0.867 | 0.700 | 0.185 | 0.117 |
8M664 | 白菜型油菜B. rapa | 0.800 | 0.830 | 0.860 | 0.690 | 0.210 |
8M681 | 白菜型油菜B. rapa | 0.670 | 0. 830 | 0.800 | 0.920 | 0.410 |
8M625 | 白菜型油菜B. rapa | 0.530 | 0.570 | 0.530 | 0.310 | 0.260 |
8M623 | 白菜型油菜B. rapa | 0.520 | 0.900 | 0.830 | 0.610 | 0.500 |
8M684 | 白菜型油菜B. rapa | 0.290 | 0.470 | 0.410 | 0.560 | 0.130 |
8M624 | 白菜型油菜B. rapa | 0.370 | 0.700 | 0.500 | 0.510 | 0.210 |
8M693 | 白菜型油菜B. rapa | 0.450 | 0.730 | 0.730 | 0.690 | 0.300 |
8M191 | 白菜型油菜B. rapa | 0.300 | 0.600 | 0.480 | 0.500 | 0.810 |
8M655 | 白菜型油菜B. rapa | 0.420 | 0.730 | 0.660 | 0.690 | 0.250 |
表2
模拟干旱相关指标的主成分分析"
主成分 Principal component | 类别 Category | 特征值 Eigen value | 贡献率Contribution ratio (%) | 累计贡献率Accumulated contribution ratio (%) | 抗旱指标特征向量Eigen vector of measured indicators | ||||
---|---|---|---|---|---|---|---|---|---|
萌发抗旱指数DRI | 相对萌发率RGR | 相对萌发势RSP | 相对根长RRL | 相对胚轴长RSL | |||||
PC1 | 新型甘蓝型油菜 New-type B. napus | 2.431 | 48.620 | 48.620 | 0.416 | 0.597 | 0.589 | -0.024 | 0.350 |
PC2 | 新型甘蓝型油菜 New-type B. napus | 1.774 | 35.470 | 84.090 | 0.332 | -0.224 | -0.274 | 0.720 | 0.497 |
PC3 | 新型甘蓝型油菜 New-type B. napus | 0.597 | 11.930 | 96.020 | -0.784 | 0.083 | 0.110 | 0.011 | 0.605 |
PC1 | 白菜型油菜 B. rapa | 3.580 | 71.610 | 71.600 | 0.459 | 0.512 | 0.520 | 0.468 | 0.194 |
PC2 | 白菜型油菜 B. rapa | 0.950 | 19.010 | 90.600 | -0.313 | 0.08 | -0.073 | -0.038 | 0.946 |
PC3 | 白菜型油菜 B. rapa | 0.320 | 6.430 | 97.000 | 0.599 | -0.001 | 0.103 | -0.775 | 0.175 |
表3
模拟干旱相关指标的隶属函数值"
编号 Code | 类型 Type | 萌发抗旱指数 DRI | 相对萌发率 RGR | 相对萌发势RSP | 相对根长 RRL | 相对胚轴长 RSL | 均值 Means |
---|---|---|---|---|---|---|---|
9X006 | 新型甘蓝型油菜New-type B. napus | 1.00 | 0.00 | 0.01 | 0.73 | 0.20 | 0.388 |
9X002 | 新型甘蓝型油菜New-type B. napus | 0.78 | 0.09 | 0.00 | 1.00 | 0.19 | 0.412 |
9X025 | 新型甘蓝型油菜New-type B. napus | 1.00 | 0.25 | 0.24 | 0.88 | 0.00 | 0.474 |
9X026 | 新型甘蓝型油菜New-type B. napus | 0.46 | 1.00 | 0.89 | 0.02 | 0.00 | 0.474 |
9X028 | 新型甘蓝型油菜New-type B. napus | 0.58 | 1.00 | 1.00 | 0.05 | 0.00 | 0.526 |
9X111 | 新型甘蓝型油菜New-type B. napus | 0.55 | 0.80 | 0.39 | 1.00 | 0.00 | 0.548 |
中双11 ZS11 | 甘蓝型油菜B. napus | 0.91 | 1.00 | 0.78 | 0.09 | 0.00 | 0.556 |
9X016 | 新型甘蓝型油菜New-type B. napus | 0.50 | 0.96 | 1.00 | 0.33 | 0.00 | 0.558 |
9X015 | 新型甘蓝型油菜New-type B. napus | 1.00 | 0.92 | 0.78 | 0.15 | 0.00 | 0.570 |
9X018 | 新型甘蓝型油菜New-type B. napus | 0.88 | 1.00 | 0.89 | 0.68 | 0.00 | 0.690 |
8M623 | 白菜型油菜B. rapa | 0.07 | 1.00 | 0.83 | 0.28 | 0.00 | 0.436 |
8M191 | 白菜型油菜B. rapa | 0.00 | 0.61 | 0.35 | 0.40 | 1.00 | 0.472 |
8M624 | 白菜型油菜B. rapa | 0.31 | 1.00 | 0.59 | 0.62 | 0.00 | 0.504 |
8M684 | 白菜型油菜B. rapa | 0.37 | 0.78 | 0.66 | 1.00 | 0.00 | 0.562 |
8M625 | 白菜型油菜B. rapa | 0.88 | 1.00 | 0.89 | 0.17 | 0.00 | 0.588 |
8M681 | 白菜型油菜B. rapa | 0.51 | 0.83 | 0.76 | 1.00 | 0.00 | 0.620 |
8M655 | 白菜型油菜B. rapa | 0.35 | 1.00 | 0.84 | 0.91 | 0.00 | 0.620 |
8M693 | 白菜型油菜B. rapa | 0.36 | 1.00 | 1.00 | 0.90 | 0.00 | 0.652 |
8M664 | 白菜型油菜B. rapa | 0.90 | 0.96 | 1.00 | 0.73 | 0.00 | 0.721 |
表4
模拟干旱隶属函数值的相关性分析"
编号Code | 9X006 | 9X002 | 9X025 | 9X026 | 9X028 | 9X111 | 中双11 ZS 11 | 9X016 | 9X015 | 9X018 |
---|---|---|---|---|---|---|---|---|---|---|
8M623 | -0.686 | -0.583 | -0.336 | 0.874* | 0.833* | 0.354 | 0.610 | 0.909* | 0.522 | 0.666 |
8M191 | -0.631 | -0.497 | -0.821* | -0.274 | -0.362 | -0.475 | -0.563 | -0.398 | -0.665 | -0.734 |
8M624 | -0.309 | -0.129 | 0.081 | 0.692 | 0.651 | 0.764 | 0.560 | 0.791 | 0.503 | 0.789 |
8M684 | 0.023 | 0.289 | 0.398 | 0.311 | 0.300 | 0.912* | 0.216 | 0.539 | 0.201 | 0.695 |
8M625 | -0.151 | -0.317 | 0.122 | 0.923** | 0.948** | 0.265 | 0.992** | 0.891* | 0.986** | 0.872* |
8M681 | 0.064 | 0.28 | 0.455 | 0.400 | 0.402 | 0.906* | 0.341 | 0.622 | 0.347* | 0.793 |
8M655 | -0.232 | -0.005 | 0.177 | 0.569 | 0.547 | 0.805 | 0.409 | 0.748 | 0.372 | 0.775 |
8M693 | -0.291 | -0.089 | 0.122 | 0.624 | 0.611 | 0.721 | 0.440 | 0.805 | 0.404 | 0.784 |
8M664 | 0.067 | 0.052 | 0.441 | 0.742 | 0.778 | 0.651 | 0.800 | 0.864* | 0.818* | 0.991** |
[1] | NAGAHARU U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan Journal of Botany, 1935,7:389-452. |
[2] |
CHALHOUB B, DENOEUD F, LIU S Y, PARKIN I A P, TANG H B, WANG X Y, CHIQUET J, BELCRAM H, TONG C B, SAMANS B, CORRÉA M, DA SILVA C, JUST J, FALENTIN C, KOH C S, LE CLAINCHE I, BERNARD M, BENTO P, NOEL B, LABADIE K, ALBERTI A, CHARLES M, ARNAUD D, GUO H, DAVIAUDC ALAMERY S, JABBARI K, ZHAO M X, EDGER P P, CHELAIFA H, TACK D, LASSALLE G, MESTIRI I, SCHNEL N, LE PASLIER M C, FAN G Y, RENAULT V, BAYER P E, GOLICZ A A, MANOLI S, LEE T H, THI D V H, CHALABI S, HU Q, FAN C C, TOLLENAERE R, LU Y H, BATTAIL C, SHEN J X, SIDEBOTTOM C H D, WANG X F, CANAGUIER A, CHAUVEAU A, BÉRARD A, DENIOT G, GUAN M, LIU Z S, SUN F M, LIM Y P, LYONS E, TOWN C D, BANCROFT I, WANG X W, MENG J L, MA J X, PIRES J C, KING G J, BRUNEL D, DELOURME R, RENARD M, AURY J M, ADAMS K L, BATLEY J, SNOWDON R J, TOST J, EDWARDS D, ZHOU Y M, HUA W, SHARPE A G, PATERSON A H, GUAN C Y, WINCKER P. Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014,345(6199):950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[3] | PRAKASH S, WU X, BHAT SR. History, evolution and domestication of Brassica crops. Plant Breeding Reviews, 2012,35:19-84. |
[4] |
VALLIYODAN B, NGUYEN H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 2006,9(2):189-195.
pmid: 16483835 |
[5] |
TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
pmid: 20150489 |
[6] |
白鹏, 冉春燕, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014,47(18):3566-3776.
doi: 10.3864/j.issn.0578-1752.2014.18.005 |
BAI P, RAN C Y, XIE X Y. Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Scientia Agricultural Sinica, 2014,47(18):3566-3776. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.005 |
|
[7] |
BECILER H C, ENGQVIST G M, ILARLSSON B. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics, 1995,91(1):62-67.
pmid: 24169668 |
[8] |
ALLENDER C, KING G. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biology, 2010,10:54-62.
pmid: 20350303 |
[9] |
MEI J Q, LI Q F, QIAN L W, FU Y, LI J N, FRAUEN M, QIAN W. Genetic investigation of the origination of allopolyploid with virtually synthesized lines: application to the C subgenome of Brassica napus. Heredity, 2011,106(6):955-961.
pmid: 21102622 |
[10] |
BUS A, KÖRBER N, SNOWDON R J, STICH B. Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theoretical and Applied Genetics, 2011,123:1413-1423.
pmid: 21847624 |
[11] |
QIAN W, MENG J L, LI M T, FRAUEN M, SASS O, NOACIL J, JUNG C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B. napus L.) with emphasis on the evolution of Chinese rapeseed. Theoretical and Applied Genetics, 2006,113:49-54.
pmid: 16604336 |
[12] | GIRILE A, SCHIERHOLT A, BECILER H C. Extending the rapeseed gene pool with resynthesized Brassica napus I: Genetic diversity. Genetic Resources and Crop Evolution, 2012,59:1441-1447. |
[13] |
GIRILE A, SCHIERHOLT A, BECILER H C. Extending the rapeseed gene pool with resynthesized Brassica napns II: Heterosis. Theoretical and Applied Genetics, 2012,124(6):1017-1026.
doi: 10.1007/s00122-011-1765-7 |
[14] |
FU D H, QIAN W, ZOU J, MENG J L. Genetic dissection of inter- subgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012,184:151-164.
doi: 10.1007/s10681-011-0533-8 |
[15] |
ZOU J, HU D D, MASON A S, SHEN X Q, WANG X H, WANG N, GRANDKE F, WANG M, CHAN S H, SNOWDON R J, MENG J L. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnology Journal, 2018,16(2):507-519.
pmid: 28703467 |
[16] | QIAN L W, QIAN W, SNOWDON R J. Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics, 2014,15(1):1170-1186. |
[17] | TALEBI R, HAGHNAZARI A, TABATABAEI I. Assessment of genetic variation within international collection of Brassica rapa genotypes using inter simple sequence repeat DNA markers. Biharean Biologist, 2010,4(2):145-153. |
[18] |
ZHAO J J, WANG X W, DENG B, LOU P, WU J, SUN R F, XU Z Y, VROMANS J, KOORNNEEF M, BONNEMA G. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theoretical and Applied Genetics, 2005,110(7):1301-1314.
doi: 10.1007/s00122-005-1967-y pmid: 15806345 |
[19] |
GUO Y M, CHEN S, LI Z Y, COWLING W A. Centre of origin and centres of diversity in an ancient crop,Brassica rapa (turnip rape). Journal of Heredity, 2014,105(4):555-565.
pmid: 24714366 |
[20] | 何余堂, 陈宝元, 傅廷栋, 李殿荣, 涂金星. 白菜型油菜在中国的起源与进化. 遗传学报, 2003,30(11):1003-1012. |
HE Y T, CHEN B Y, FU T D, LI D R, TU J X. Origin and evolution of Brassica campestris L. in China. Acta Genetica Sinica, 2003,30(11):1003-1012. (in Chinese) | |
[21] |
GUO Y M, TURNER N C, CHEN S, NELSON M N SIDDIQUE K H M, COWLING W A. Genotypic variation for tolerance to transient drought during the reproductive phase of Brassica rapa. Journal of Agronomy and Crop Science, 2015,201(4):267-279.
doi: 10.1111/jac.12107 |
[22] | CHEN S, ZOU J, COWLING W A, MENG J L. Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop and Pasture Science, 2010,61(6):483-492. |
[23] | GUO Y M, SAMANS B, CHEN S, KIBRET K B, HATZIG S, TURNER N C, NELSON M N, COWLING W A, SNOWDON R J. Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought Stress. Plant Molecular Biology Report, 2017,35(4):416-430. |
[24] | 周庆红, 周灿, 范淑英. 远缘杂交在芸薹属作物育种中的应用研究进展. 北方园艺, 2015(2):165-170. |
ZHOU Q H, ZHOU C, FAN S Y. Research advance in application of distant hybridization on breeding of Brassica crops. Northern Horticulture, 2015(2):165-170. (in Chinese) | |
[25] | RIPLEY V L, BEVERSDORF W D. Development of self- incompatible Brassica napus:(I) Introgression of S alleles from Brassica oleracea through interspecific hybridization. Plant Breeding, 2010,122(1):1-5. |
[26] | 岳芳, 汪雷, 陈燕桂, 忻晓霞, 李勤菲, 梅家琴, 熊志勇, 钱伟. 利用异源六倍体(ArArAnAnCnCn)与甘蓝种间杂交合成甘蓝型油菜的新方法. 作物学报, 2019,45(2):188-195. |
YUE F, WANG L, CHEN Y G, JIN X X, LI Q F, MEI J Q, XIONG Z Y, QIAN W. A new method for the synthesis of Brassica napus by using inter-species hexaploid (ArArAnAnCnCn) and B. oleracea. Acta Agronomica Sinica, 2019,45(2):188-195. (in Chinese) | |
[27] | 钱伟, 李勤菲, 梅家琴, 付东辉, 李加纳. 一种利用白菜型油菜拓宽甘蓝型油菜遗传变异的方法:中国, 2010106071854.3.2013. |
QIAN W, LI Q F, MEI J Q, FU D H, LI J N. A strategy of using Brassica rapa to widen genetic variance of B. napus: China , 201010607185. 4.2013. (in Chinese) | |
[28] |
MEI J Q, LIU Y, WEI D Y, WITTKOP B, DING Y J, LI Q F, LI J N, WAN H F, LI Z Y, GE X H, FRAUEN M, SNOWDON , R J, QIAN W, FRIENT W. Transfer of sclerotinaia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theoretical and Applied Genetics, 2015,128(4):639-644.
doi: 10.1007/s00122-015-2459-3 pmid: 25628163 |
[29] |
李勤菲, 陈致富, 刘瑶, 梅家琴, 钱伟. 六倍体(AnAnCnCnCoCo)与白菜型油菜杂交可交配性及后代菌核病抗性. 中国农业科学, 2017,50(1):123-133.
doi: 10.3864/j.issn.0578-1752.2017.01.011 |
LI Q F, CHEN Z F, LIU Y, MEI J Q, QIAN W. Crossability and sclerotinia resistance among hybrids between hexaploid (AnAnCnCnCoCo) and Brassica rapa. Scientia Agricultura Sinica, 2017,50(1):123-133.( in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.011 |
|
[30] | SHANGGUAN Z P, LEI T W, SHAO M A, XUE Q W. Effects of phosphorus nutrient on the hydraulic conductivity of Sorghum (Sorghum vulgare Pers.) seedling roots under water deficiency. Journal of Integrative Plant Biology, 2005,47(4):421-427. |
[31] |
陈郡雯, 吴卫, 郑有良, 侯凯, 徐应文, 翟娟园. 聚乙二醇(PEG-6000)模拟干旱条件下白芷苗期抗旱性研究. 中国中药杂志, 2010,35(2):149-153.
pmid: 20394281 |
CHEN J W, WU W, ZHENG Y L, HOU K, XU Y W, ZHAI J Y. Drought resistance of Angelica dahurica during seedling stage under polyethylene glycol (PEG-6000)-simulated drought stress. China Journal of Chinese Materia Medica, 2010,35(2):149-153. (in Chinese)
pmid: 20394281 |
|
[32] |
LI Q F, ZHOU Q H, MEI J Q, ZHANG Y J, LI J N, LI Z Y, GE X H, XIONG Z Y, HUANG Y J, QIAN W. Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Molecular Breeding, 2014,34(4):1955-1963.
doi: 10.1007/s11032-014-0153-9 |
[33] |
QUAZI M. Interspecific hybrids between B. napus and B. oleracea developed by embryo culture. Theoretical and Applied Genetics, 1988,75(2):309-318.
doi: 10.1007/BF00303970 |
[34] |
DING Y J, MEI J Q, LI Q F, LIU Y, WAN H F, WANG L, BECKER H C, QIAN W. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genetic Resources and Crop Evolution, 2013,60(5):1615-1619.
doi: 10.1007/s10722-013-9978-z |
[35] | XIAO Y, CHEN L L, ZOU J, TIAN E T, XIA W, MENG J L. Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical Applied Genetics, 2010,121(6):1141-1150. |
[36] | 刘瑶, 丁一娟, 汪雷, 万华方, 梅家琴, 钱伟. 甘蓝型油菜与AnAnCnCnCoCo六倍体可交配性及杂种菌核病抗性. 中国农业科学, 2015,48(24):4885-4891. |
LIU Y, DING Y J, WANG L, WAN H F, MEI J Q, QIAN W. Crossability between Brassica napus with hexaploid AnAnCnCnCoCo and sclerotinia resistance in the hybrids. Scientia Agricultura Sinica , 2015,48(24):4885-4891. (in Chinese) | |
[37] |
FANG Y J, XIONG L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015,72(4):673-689.
pmid: 25336153 |
[38] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007,58(2):221-227.
doi: 10.1093/jxb/erl164 pmid: 17075077 |
[39] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K, SEKI M. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003,6(5):410-417.
pmid: 12972040 |
[40] |
卢坤, 张琳, 曲存民, 梁颖, 唐章林, 李加纳. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因. 中国农业科学, 2015,48(4):630-645.
doi: 10.3864/j.issn.0578-1752.2015.04.02 |
LU K, ZHANG L, QU C M, LINAG Y, TANG Z L, LI J N. Identification of drought stress-responsive genes in leaves of Brassica napus by RNA sequencing. Scientia Agricultura Sinica, 2015,48(4):630-645. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.04.02 |
|
[41] |
CHEN L, REN F, ZHONG H, JIANG W M, LI X B. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 2010,42(2):154-164.
doi: 10.1093/abbs/gmp113 pmid: 20119627 |
[42] |
ZHANG J, MASON A S, WU J, LIU S, ZHANG X C, LUO T, REDDEN R, BATLEY J, HU L Y, YAN G J. Identification of putative candidate genes for water stress tolerance in Canola (Brassica napus). Frontiers in Plant Science, 2015,6:1058.
pmid: 26640475 |
[1] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[2] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[3] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[4] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[5] | 杜金霞,李奕莎,李美霖,陈文浛,张木清. 甘蔗不同基因型对白条病抗性的评价[J]. 中国农业科学, 2022, 55(21): 4118-4130. |
[6] | 李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选[J]. 中国农业科学, 2021, 54(16): 3381-3392. |
[7] | 张斌斌,蔡志翔,沈志军,严娟,马瑞娟,俞明亮. 观赏桃种质资源表型性状多样性评价[J]. 中国农业科学, 2021, 54(11): 2406-2418. |
[8] | 王珊珊,赵晨辉,李红莲,张冰冰,梁英海,宋宏伟. 东北地区10份李种质资源果实香气成分分析[J]. 中国农业科学, 2021, 54(11): 2476-2486. |
[9] | 王刘艳,王瑞莉,叶桑,郜欢欢,雷维,陈柳依,吴家怡,孟丽姣,袁芳,唐章林,李加纳,周清元,崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选[J]. 中国农业科学, 2020, 53(8): 1510-1523. |
[10] | 陈雪,王瑞,井付钰,张胜森,贾乐东,段谋正,吴宇. 基于二代测序的甘蓝型油菜白花基因候选区间定位及连锁标记验证[J]. 中国农业科学, 2020, 53(6): 1108-1117. |
[11] | 祝令晓,刘连涛,张永江,孙红春,张科,白志英,董合忠,李存东. 化学封顶对棉花株型的调控及评价指标筛选[J]. 中国农业科学, 2020, 53(20): 4152-4163. |
[12] | 宋楚君,范方媛,龚淑英,郭昊蔚,李春霖,纵榜正. 不同产地红茶的滋味特征及主要贡献物质[J]. 中国农业科学, 2020, 53(2): 383-394. |
[13] | 王远鹏,黄晶,孙钰翔,柳开楼,周虎,韩天富,都江雪,蒋先军,陈金,张会民. 近35年红壤稻区土壤肥力时空演变特征—以进贤县为例[J]. 中国农业科学, 2020, 53(16): 3294-3306. |
[14] | 李玲,徐舒,曹如霞,陈玲玲,崔鹏,吕尊富,陆国权. 基于PCA-Entropy TOPSIS的甘薯品种块根质构品质评价[J]. 中国农业科学, 2020, 53(11): 2161-2170. |
[15] | 朱艳,蔡焕杰,宋利兵,商子惠,陈慧. 基于温室番茄产量和果实品质对加气灌溉处理的综合评价[J]. 中国农业科学, 2020, 53(11): 2241-2252. |
|