中国农业科学 ›› 2020, Vol. 53 ›› Issue (8): 1510-1523.doi: 10.3864/j.issn.0578-1752.2020.08.002
王刘艳,王瑞莉,叶桑,郜欢欢,雷维,陈柳依,吴家怡,孟丽姣,袁芳,唐章林,李加纳,周清元(),崔翠()
收稿日期:
2019-08-09
接受日期:
2019-11-14
出版日期:
2020-04-16
发布日期:
2020-04-29
通讯作者:
周清元,崔翠
作者简介:
王刘艳,E-mail: 810980572@qq.com。
基金资助:
WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan(),CUI Cui()
Received:
2019-08-09
Accepted:
2019-11-14
Online:
2020-04-16
Published:
2020-04-29
Contact:
QingYuan ZHOU,Cui CUI
摘要:
【目的】寻找苯磺隆胁迫下油菜种子萌发性状相关的QTL及其耐性基因,为筛选与培育耐苯磺隆油菜种质以及探究油菜种子萌发过程中苯磺隆耐性分子机理奠定基础。【方法】用0.15 mg·kg -1苯磺隆溶液处理由人工合成甘蓝型油菜10D130和甘蓝型油菜常规品种ZS11构建的包含175个株系的高世代重组自交系(RIL)群体,进行种子发芽试验,以蒸馏水为对照,分别测定其相对发芽势、相对发芽率、相对根长和相对干重。然后,利用油菜6K SNP芯片对该RIL群体进行基因分型,通过JoinMap4.0软件构建高密度遗传连锁图谱。基于该遗传图谱,利用MapQTL软件多QTL作图法对4个性状的相对值进行QTL定位,根据各QTL置信区间查找甘蓝型油菜的基因序列,并依次与拟南芥基因组序列进行BLAST,筛选可能与耐苯磺隆胁迫相关的候选基因。【结果】频数分布表明4个相对性状的变异范围较大,且呈连续性分布,符合数量性状表现特征,适宜进行QTL遗传分析。相关分析表明,相对发芽率和相对发芽势呈极显著正相关,相关系数为0.587。构建的遗传图谱包含1 897个多态性SNP标记,覆盖甘蓝型油菜基因组3 214.19 cM,标记之间的平均图距为1.69 cM。利用此图谱共检测到22个相关QTL,表型贡献率变幅为6.4%—12.6%。其中,与相对发芽势、相对发芽率相关的QTL分别有6个和3个,与相对根长和相对干重有关的QTL分别为8个和5个。在A01染色体64.857 cM、55.935 cM和56.645 cM处检测到的相对发芽势与相对发芽率QTL的置信区间完全或者部分重叠。通过分析QTL置信区间上甘蓝型油菜对应的区间序列,筛选到30个可能与油菜耐苯磺隆有关的候选基因,其中包括18个细胞色素P450家族成员、5个糖基转移酶家族基因、1个GSTF相关基因、1个ABC转运蛋白相关基因和1个ALS基因,这些基因均与除草剂抗性机制有关,尤其ALS为磺酰脲类除草剂靶位点酶;另外筛选到1个BHLH和1个JAZ6基因,BHLH与JAZ蛋白可通过相互作用来防御胁迫;检测到1个LSU2蛋白相关基因和1个MATE家族成员,前者参与细胞氧化剂解毒及植物防御反应,后者参与类黄酮、生物碱、金属离子、其他多种代谢物的转运及有毒物质引起的植物胁迫响应。【结论】检测到与相关QTL共22个,筛选出可能与苯磺隆耐性有关的候选基因30个。这些基因通过加速毒性分子的转运与代谢从而响应有毒物质引起的胁迫反应,可能参与植物对苯磺隆的抗性调节与反应机制。
王刘艳,王瑞莉,叶桑,郜欢欢,雷维,陈柳依,吴家怡,孟丽姣,袁芳,唐章林,李加纳,周清元,崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选[J]. 中国农业科学, 2020, 53(8): 1510-1523.
WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress[J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
表1
两亲本各浓度下根长显著性分析"
浓度Concentration (mg·kg-1) | ZS11 | 10D130 | ||||
---|---|---|---|---|---|---|
均值 Mean (cm) | 显著性检验 Significant (P<0.05) | 降幅 Percentage reduction (%) | 均值 Mean (cm) | 显著性检验 Significant (P<0.05) | 降幅 Percentage reduction (%) | |
CK | 7.88 | a | — | 6.78 | a | — |
0.075 | 7.08 | a | -10.15 | 5.71 | a | -15.78 |
0.15 | 6.91 | a | -12.31 | 4.16 | b | -38.64 |
0.25 | 4.25 | b | -46.07 | 2.12 | c | -68.73 |
0.50 | 2.77 | c | -64.85 | 0.86 | c | -87.32 |
表3
F2:7群体的重复间及株系间差异性分析"
性状 Trait | 重复间差异性 Inter repetition difference | 株系间差异性 Difference among strains | ||||
---|---|---|---|---|---|---|
自由度df | F | 显著性Significant | 自由度df | F | 显著性Significant | |
相对发芽势RGV | 2 | 0.597 | 0.551 | 174 | 3.356 | 3.8E-22 |
相对发芽率RGR | 2 | 1.136 | 0.322 | 174 | 3.707 | 1.2E-25 |
相对根长RRL | 2 | 0.009 | 0.991 | 174 | 36.920 | 2.5E-157 |
相对干重RDW | 2 | 0.766 | 0.466 | 174 | 3.175 | 2.5E-20 |
表5
F2:7群体4个相对性状的QTL定位"
性状 Trait | 位点 Loci | 左标记 Left marker | 右标记 Right marker | 染色体 Chr. | 位置 Position (cM) | 阈值 LOD | 贡献率 Expl. (%) | 置信区间 Confidence interval (cM) |
---|---|---|---|---|---|---|---|---|
相对发芽势 RGV | qRGVC02-1 | / | AX-86224097 | C02 | 0.000 | 3.04 | 7.7 | 0.000—0.468 |
qRGVC03-1 | AX-95665263 | AX-177835191 | C03 | 68.724 | 2.88 | 7.3 | 67.838—69.724 | |
qRGVC07-1 | AX-177830550 | AX-95503939 | C07 | 79.903 | 2.82 | 7.1 | 72.776—80.784 | |
qRGVA01-1 | AX-95656842 | AX-182125504 | A01 | 55.935 | 2.61 | 6.6 | 54.426—56.645 | |
qRGVA01-2 | AX-182153395 | AX-182155384 | A01 | 64.857 | 2.65 | 6.7 | 62.861—67.428 | |
qRGVA06-1 | AX-95501842 | AX-177829720 | A06 | 106.205 | 2.62 | 6.7 | 105.840—108.202 | |
相对发芽率 RGR | qRGRA01-1 | AX-95509232 | AX-177830916 | A01 | 56.645 | 4.31 | 10.7 | 55.935—57.420 |
qRGRA01-2 | AX-182153395 | AX-182155384 | A01 | 64.857 | 2.95 | 7.5 | 62.861—67.428 | |
qRGRA03-1 | AX-95508795 | AX-95509572 | A03 | 127.616 | 2.82 | 7.2 | 125.682—129.203 | |
相对根长 RRL | qRRLA04-1 | AX-182176371 | AX-95505772 | A04 | 94.698 | 4.51 | 11.2 | 88.608—97.938 |
qRRLA04-2 | AX-95507645 | AX-177833715 | A04 | 113.308 | 5.12 | 12.6 | 108.264—114.008 | |
qRRLA04-3 | AX-177827854 | AX-95503983 | A04 | 132.285 | 2.89 | 7.3 | 130.443—134.464 | |
qRRLA06-1 | AX-95664740 | AX-95506250 | A06 | 98.667 | 3.46 | 8.7 | 97.389—101.050 | |
qRRLA06-2 | AX-105306485 | AX-95664864 | A06 | 113.134 | 3.35 | 8.4 | 112.441—113.682 | |
qRRLA06-3 | AX-95656835 | AX-105307005 | A06 | 124.073 | 4.01 | 10.0 | 123.077—130.636 | |
qRRLA09-1 | AX-105307894 | AX-177910950 | A09 | 284.516 | 3.06 | 7.7 | 283.174—285.872 | |
qRRLC01-1 | AX-105335237 | AX-105335655 | C01 | 45.715 | 2.51 | 6.4 | 42.779—47.043 | |
相对干重 RDW | qRDWA03-1 | AX-95663919 | AX-95638137 | A03 | 98.052 | 2.98 | 7.5 | 97.681—99.234 |
qRDWA04-1 | AX-95662645 | AX-182137198 | A04 | 17.105 | 3.2 | 8.1 | 12.178—19.860 | |
qRDWA04-2 | AX-179307304 | AX-95664963 | A04 | 39.299 | 2.93 | 7.4 | 38.667—41.328 | |
qRDWA02-1 | AX-179307763 | AX-177832049 | A02 | 125.116 | 2.65 | 6.7 | 121.653—129.830 | |
qRDWC03-1 | AX-105338724 | AX-105308542 | C03 | 187.649 | 2.52 | 6.4 | 185.306—188.940 |
表6
苯磺隆耐性相关性状的候选基因"
性状 Trait | 位点 Loci | 染色体 Chr. | 物理区间 Physical interval (bp) | 候选基因 Candidate gene | 拟南芥基因 Arabidopsis gene | 基因 Gene | 描述 Description |
---|---|---|---|---|---|---|---|
相对发 芽势 RGV | qRGVC07-1 | C07 | 33957781—34814007 | BnaC07g29830D | AT5G24660 | LSU2 | 细胞氧化剂解毒;对防御反应调控 Cellular oxidant detoxification; Regulation of defense response |
qRGVA01-1 | A01 | 6196365—6753945 | BnaA01g12870D | AT4G23030 | / | MATE家族蛋白 MATE efflux family protein | |
相对发 芽率 RGR | qRGRA01-1 | A01 | 6196365—6753945 | BnaA01g12870D | AT4G23030 | / | MATE家族蛋白 MATE efflux family protein |
qRGRA03-1 | A03 | 14987907—15498700 | BnaA03g31340D | AT3G10670 | ABCI6 | 参与生物发生或修复氧化破坏的Fe-S簇 Involved in the biogenesis or repair of oxidatively damaged Fe-S clusters. | |
相对 根长 RRL | qRRLA04-1 | A04 | 14446411—15117001 | BnaA04g19030D | AT2G32740 | GT13 | 半乳糖基转移酶13 Galactosyltransferase 13 |
BnaA04g17910D | AT2G30860 | GSTF9 | 编码GST phi类谷胱甘肽转移酶 Encodes glutathione transferase belonging to the phi class of GSTs | ||||
BnaA04g18440D | AT2G31790 | UGT | UDP-糖基转移酶超家族蛋白 UDP-Glycosyltransferase superfamily protein | ||||
qRRLA04-2 | A04 | 15913314—16484458 | BnaA04g21090D | AT2G36760 | UGT73C2 | UDP-葡萄糖基转移酶73C2 UDP-glucosyl transferase 73C2 | |
qRRLA04-3 | A04 | 17814614—17923085 | BnaA04g24370D | AT2G42250 | CYP712A1 | CYP712A的成员 Member of CYP712A | |
qRRLA06-1 | A06 | 21396095—21528844 | BnaA06g31960D | AT4G39510 | CYP96A12 | CYP96A的成员 Member of CYP96A | |
BnaA06g32050D | AT4G27710 | CYP709B3 | CYP709B的成员 Member of CYP709B | ||||
qRRLA06-2 | A06 | 21528844—22092492 | BnaA06g32370D | AT3G25180 | CYP82G1 | 编码细胞色素P450单加氧酶 Encodes a cytochrome P450 monooxygenase | |
BnaA06g32970D | AT3G26290 | CYP71B26 | 细胞色素P450成员 Putative cytochrome P450 | ||||
BnaA06g32980D | AT2G02580 | CYP71B9 | CYP71B的成员 Member of CYP71B | ||||
BnaA06g32990D | AT3G26300 | CYP71B34 | 细胞色P450 Putative cytochrome P450 | ||||
BnaA06g33000D | AT3G48560 | ALS | 催化乙酰乳酸的形成;被磺酰脲类除草剂抑制等 Catalyzing the formation of acetolactate; Inhibited by the sulphonylurea herbicide. etc | ||||
BnaA06g33010D | AT3G26220 | CYP71B3 | 细胞色素P450单加氧酶 Cytochrome P450 monooxygenase | ||||
BnaA06g33020D | AT3G26210 | CYP71B23 | 细胞色素P450成员 Putative cytochrome P450 | ||||
BnaA06g33030D | AT3G26200 | CYP71B22 | 细胞色素P450成员 Putative cytochrome P450 | ||||
BnaA06g33040D | AT3G26190 | CYP71B21 | 细胞色素P450成员 Putative cytochrome P450 | ||||
BnaA06g33060D | AT3G26170 | CYP71B19 | 细胞色素P450成员 Putative cytochrome P450 | ||||
BnaA06g33050D | AT3G26180 | CYP71B20 | 细胞色素P450成员 Putative cytochrome P450 | ||||
BnaA06g33070D | AT3G26165 | CYP71B18 | 细胞色素P450成员 Putative cytochrome P450. | ||||
qRRLC01-1 | C01 | 3631449—3936101 | BnaC01g06930D | AT1G13080 | CYP71B2 | 细胞色素P450单加氧酶 Cytochrome P450 monooxygenase | |
相对 干重 RDW | qRDWA02-1 | A02 | 8524524—9460659 | BnaA02g15990D | AT1G72450 | JAZ6 | 调节防御反应及茉莉酸介导的信号传导途径Regulation of defense response and jasmonic acid mediated signaling pathway |
BnaA03g22720D | AT1G72210 | BHLH96 | BHLH DNA结合超家族蛋白 BHLH DNA-binding superfamily protein | ||||
BnaA02g15580D | AT2G46960 | CYP709B1 | CYP709B的成员 Member of CYP709B | ||||
qRDWA03-2 | A03 | 10805287—12106754 | BnaA03g22720D | AT2G26480 | UGT76D1 | UDP-葡萄糖基转移酶76D1 UDP-glucosyl transferase 76D1 | |
BnaA03g25050D | AT4G12320 | CYP706A6 | CYP706A的成员 Member of CYP706A | ||||
qRDWA04-1 | A04 | 1637957—2461363 | BnaA04g03050D | AT3G57220 | GT | 糖基转移酶家族蛋白 Glycosyl transferase family 4 protein | |
qRDWC03-1 | C03 | 47920601—48510329 | BnaC03g59160D | AT2G25160 | CYP82F1 | 细胞色素P450成员 Cytochrome P450, family 82, subfamily F, |
[1] | GREEN J M . Current state of herbicides in herbicide-resistant crops. Pest Management Science, 2014,70(9):1351-1357. |
[2] | DONG B, QIAN W, HU J . Dissipation kinetics and residues of florasulam and tribenuron-methyl in wheat ecosystem. Chemosphere, 2015,120:486-491. |
[3] | MAZUR B J, FALCO S C . The development of herbicide resistant crops. Annual Review of Plant Biology, 1989,40(1):441-470. |
[4] | YU C Y, DONG J G, HU S W, XU AI X . Exposure to trace amounts of sulfonylurea herbicide tribenuron-methyl causes male sterility in 17 species or subspecies of cruciferous plants. BMC Plant Biology, 2017,17(1):95-11. |
[5] | YU C, HU S, HE P, SUN G, ZHANG C, YU Y . Inducing male sterility in Brassica napus L. by a sulphonylurea herbicide, tribenuron-methyl. Plant Breeding, 2006,125(1):61-64. |
[6] | 周清元, 王倩, 叶桑, 崔明圣, 雷维, 郜欢欢, 赵愉风, 徐新福, 唐章林, 李加纳, 崔翠 . 苯磺隆胁迫下油菜萌发期相关性状的全基因组关联分析. 中国农业科学, 2019,52(3):399-413. |
ZHOU Q Y, WANG Q, YE S, CUI M S, LEI W, GAO H H, ZHAO Y F, XU X F, TANG Z L, LI J N, CUI C . Genome-wide association analysis of tribenuron-methyl tolerance related traits in Brassica napus L. under germination. Scientia Agricultura Sinica, 2019,52(3):399-413. (in Chinese) | |
[7] | 孙妍妍, 曲高平, 黄谦心, 吕金洋, 郭媛, 胡胜武 . 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记. 中国油料作物学报, 2015,37(5):589-595. |
SUN Y Y, QU G P, HUANG Q X, LÜ J Y, GUO Y, HU S W . SNP markers for acetolactate synthase genes from tribenuron-methyl resistant mutants in Brassica napus L. Chinese Journal of Oil Crop Sciences, 2015,37(5):589-595. (in Chinese) | |
[8] | 杜慧平, 杜慧玲 . 苯磺隆在土壤中的消解动态和残留测定. 山西农业科学, 2015(1):50-53. |
DU H P, DU H L . Tribenuron-methly degradation dynamics and residual in soil. Journal of Shanxi Agricultural Sciences, 2015(1):50-53. (in Chinese) | |
[9] | NGUYEN T C, ABRAMS S R, FRIEDT W, SNOWDON R J . Quantitative trait locus analysis of seed germination, seedling vigour and seedling-regulated hormones in Brassica napus. Plant Breeding, 2018,137(3):388-401. |
[10] | YU X, YANG A, JAMES A T . Selecting soybeans for sulfonylurea herbicide tolerance: A comparative proteomic study of seed germinations. Crop and Pasture Science, 2017,68(1):27-32. |
[11] | 王倩, 崔翠, 叶桑, 崔明圣, 赵愉风, 林呐, 唐章林, 李加纳, 周清元 . 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价. 作物学报, 2018,44(8):1169-1184. |
WANG Q, CUI C, YE S, CUI M S, ZHAO Y F, LIN N, TANG Z L, LI J N, ZHOU Q Y . Screening and comprehensive evaluation of germplasm resources with tribenuron-methyl tolerance at germination stage in rapeseed ( Brassica napus L.). Acta Agronomica Sinica, 2018,44(8):1169-1184. (in Chinese) | |
[12] | 李慧慧, 张鲁燕, 王建康 . 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010,36(6):918-931. |
LI H H, ZHANG L Y, WANG J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010,36(6):918-931. (in Chinese) | |
[13] | LI Z, MEI S, MEI Z, LIU X, FU T, ZHOU G, TU J . Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape ( Brassica napus). Euphytica, 2014,197(3):341-353. |
[14] | BASNET R K, DUWAL A, TIWARI D N, XIAO D, MONAKHOS S, BUCHER J, MALIEPAARD C . Quantitative trait locus analysis of seed germination and seedling vigor in Brassica rapa reveals QTL hotspots and epistatic interactions. Frontiers in Plant Science, 2015,6:1032. |
[15] | LANG L, XU A, DING J, ZHANG Y, ZHAO N, TIAN Z, LIU Y, WANG Y, LIU X, LIANG F H, ZHANG B B, QIN M F, DALELHAN J, HUANG Z . Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Frontiers in Plant Science, 2017,8:1000. |
[16] | 荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊 . 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014,40(4):629-635. |
JIAN H J, XIAO Y, LI J N, MA Z Z, WEI L J, LIU L Z . QTL Mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agronomica Sinica, 2014,40(4):629-635. (in Chinese) | |
[17] | GUAN Q, ZHANG Y X, XU X L, SUN D Q, LI S Y, LIN H, PAN L Y, MA Y H . Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agricultural Sciences, 2008,1:102-104. |
[18] | LIU C, SUKUMARAN S, CLAVERIE E, SANSALONI C, DREISIGACKER S, REYNOLDS M . Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Molecular Breeding, 2019,39(3):34. |
[19] | 刘列钊, 李加纳 . 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014,47(1):24-32. |
LIU L Z, LI J N . QTL Mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Scientia Agricultura Sinica, 2014,47(1):24-32. (in Chinese) | |
[20] | 侯林涛, 王腾岳, 荐红举, 王嘉, 李加纳, 刘列钊 . 甘蓝型油菜盐胁迫下幼苗鲜重和干重 QTL 定位及候选基因分析. 作物学报, 2017,43(2):179-189. |
HOU L T, WANG T Y, JIAN H J, WANG J, LI J N, LIU L Z . QTL Mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agronomica Sinica, 2017,43(2):179-189. (in Chinese) | |
[21] | LIU W, BAI S, ZHAO N, JIA S, LI W, ZHANG L, WANG J . Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum(L.). BMC Plant Biology, 2018,18(1):225. |
[22] | 吴学莉, 易丽聪, 侯凡, 吴江生, 姚璇, 刘克德 . 表达播娘蒿突变基因DsALS-108的抗苯磺隆甘蓝型油菜植株构建. 农业生物技术学报, 2016,24(4):469-477. |
WU X L, YI L C, HOU F, WU J S, YAO X, LIU K D . Generation of tribenuron-methyl herbicide resistant rapeseed( Brasscia napus) plants expressing mutated gene Ds ALS-108 of flixweed (Descurainia sophia). Journal of Agricultural Biotechnology, 2016,24(4):469-477. (in Chinese) | |
[23] | 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松 . 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012,45(20):4326-4334. |
HU M L, PU H M, GAO J Q, LONG W H, QI C K, ZHANG J F, CHEN S . Inheritance and gene cloning of an ALS inhabiting herbicide resistant mutant line M9 in Brassica napus. Scientia Agricultura Sinica, 2012,45(20):4326-4334. (in Chinese) | |
[24] | 周清元 . 甘蓝型油菜新种质资源创建及其株型性状遗传分析[D]. 重庆: 西南大学, 2013. |
ZHOU Q Y . Study on germplasm creation of Brassica napus and genetic analysis of plant-type characters[D]. Chongqing: Southwest University, 2013. (in Chinese) | |
[25] | 郜欢欢, 叶桑, 王倩, 王刘艳, 王瑞莉, 陈柳依, 唐章林, 李加纳, 周清元, 崔翠 . 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选. 作物学报, 2019,45(9):1416-1430. |
GAO H H, YE S, WANG Q, WANG L Y, WANG R L, CHEN L Y, TANG Z L, LI J N, ZHOU Q Y, CUI C . Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus. Acta Agronomica Sinica, 2019,45(9):1416-1430. (in Chinese) | |
[26] | KOSAMBI D D . The estimation of map distances from recombination values. Annals of Eugenics, 1944,12:172-175. |
[27] | 任义英, 崔翠, 王倩, 唐章林, 徐新福, 林呐, 殷家明, 李加纳, 周清元 . 油菜主花序角果密度及其相关性状的全基因组关联分析. 中国农业科学, 2018,51(6):1020-1033. |
REN Y Y, CUI C, WANG Q, TANG Z L, XU X F, LIN N, YIN J M, LI J N, ZHOU Q Y . Genome-wide association analysis of silique density on racemes and its component traits in Brassica napus L. Scientia Agricultura Sinica, 2018,51(6):1020-1033. (in Chinese) | |
[28] | 阎志红, 刘文革, 赵胜杰, 何楠, 王俊良 . NaCl 胁迫对不同西瓜种质资源发芽的影响. 植物遗传资源学报, 2006(2):220-225. |
YAN Z H, LIU W G, ZHAO S J, HE N, WANG J L . Effect of NaCl stress on germination of different watermelon varieties. Journal of Plant Genetic Resources, 2006(2):220-225. (in Chinese) | |
[29] | 唐建明, 王勇, 方雅琴 . 油菜田常用除草剂药害及规避措施. 杂草科学, 2010(1):64-66. |
TANG J M, WANG Y, FANG Y Q . Herbicide phytotoxicity and evasion measures in rape fields. Journal of Weeds, 2010(1):64-66. (in Chinese) | |
[30] | 张宝娟, 赵惠贤, 胡胜武 . 苯磺隆对甘蓝型油菜中双 9 号的杀雄效果. 中国油料作物学报, 2010,32(4):467-471. |
ZHANG B J, ZHAO H X, HU S W . Male sterile-inducing ability of tribenuron-methyl to rapeseed cultivar Zhongshuang 9. Chinese Journal of Oil Crop Sciences, 2010,32(4):467-471. (in Chinese) | |
[31] | 付三雄, 周晓婴, 戚存扣 . 苯磺隆对甘蓝型油菜的杀雄效果及对其靶标 ALS 活性的影响. 江西农业学报, 2019,31(2):8-12. |
FU S X, ZHOU X Y, QI C K . Male-sterile-inducing efficiency of tribenuron-methyl and its effect on activity of acetolactate synthase in Brassica napus. Acta Agriculturae Jiangxi, 2019,31(2):8-12. (in Chinese) | |
[32] | 信晓阳, 曲高平, 张荣, 庞红喜, 吴强, 王发禄, 胡胜武 . 不同品种油菜对苯磺隆耐药性差异的鉴定. 西北农业学报, 2014,23(7):68-74. |
XIN X Y, QU G P, ZHANG R, PANG H X, WU Q, WANG F L, HU S W . Identification of the tribenuron-methyl tolerance in different rapeseed genotypes. Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(7):68-74. (in Chinese) | |
[33] | 缪颖, 伍炳华 . 植物抗逆性的获得与信息传导. 植物生理学通讯, 2001(1):71-76. |
MIAO Y, WU B H . The acquirement of stress response characteristics and signal transduction in plants. Plant Physiology Communications, 2001(1):71-76. (in Chinese) | |
[34] | NIU Y, FIGUEROA P, BROWSE J . Characterization of JAZ- interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. Journal of Experimental Botany, 2011,62(6):2143-2154. |
[35] | 吴平治, 李东屏 . 拟南芥中MATE基因家族的研究进展. 遗传, 2006,28(7):906-910. |
WU P Z, LI D P . Advances in the study of MATE gene family in Arabidopsis. Genetic, 2006,28(7):906-910. (in Chinese) | |
[36] | CHEN L, LIU Y, LIU H, KANG L, GENG J, GAI Y, LI Y . Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS ONE, 2015,10(3):e0118578. |
[37] | SHITAN N, MINAMI S, MORITA M, HAYASHIDA M, ITO S, TAKANASHI K, OMOTE H, MORIYAMA Y, SUGIYAMA A, GOOSSENS A, MORIYASU M, YAZAKI K . Involvement of the Leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS ONE, 2014,9(9):e108789. |
[38] | HE X . Think positively: The structural basis of cation-binding and coupling of the multidrug and toxic-compound extrusion (MATE) transporter family. University of California, San Diego, 2010. |
[39] | SHOJI T . ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: A common theme among diverse detoxification mechanisms. International Review of Cell & Molecular Biology, 2014,309:303. |
[40] | LU P, MAGWANGA R O, GUO X, KIRUNGU J N, LU H, CAI X, PENG R . Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress. Genes, Genomes, Genetics, 2018,8(7):2483-2500. |
[41] | WANG H, SEO J K, GAO S, CUI X, JIN H . Silencing of AtRAP, a target gene of a bacteria-induced small RNA, triggers antibacterial defense responses through activation of LSU2 and down-regulation of GLK1. New Phytologist, 2017,215(3):1144-1155. |
[42] | LI M, YU Q, HAN H, VILA-AIUB M, POWLES S B . ALS herbicide resistance mutations in Raphanus raphanistrum: Evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Management Science, 2013,69(6):689-695. |
[43] | XU X, LIU G, CHEN S, LI B, LIU X, WANG X, FAN C Q, WANG G Q, NI H . Mutation at residue 376 of ALS confers tribenuron-methyl resistance in flixweed ( Descurainia sophia) populations from Hebei province, China. Pesticide Biochemistry and Physiology, 2015,125:62-68. |
[44] | HAN H, YU Q, PURBA E, LI M, WALSH M, FRIESEN S, POWLES S B . A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Management Science, 2012,68(8):1164-1170. |
[45] | SHIMIZU M, GOTO M, HANAI M, SHIMIZU T, IZAWA N, KANAMOTO H, TOMIZAWA K, YOKOTA A, KOBAYASHI H . Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiology, 2008,147(4):1976-1983. |
[46] | SIMINSZKY B, CORBIN F T, WARD E R, FLEISCHMANN T J, DEWEY R E . Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the USA, 1999,96(4):1750-1755. |
[47] | BAI S, LIU W, WANG H, ZHAO N, JIA S, ZOU N, GUO W, WANG J . Enhanced herbicide metabolism and metabolic resistance genes identified in tribenuron-methyl resistant Myosoton aquaticum L. Journal of Agricultural and Food Chemistry, 2018,66(37):9850-9857. |
[48] | YU Q, POWLES S . Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiology, 2014,166(3):1106-1118. |
[49] | IWAKAMI S, KAMIDATE Y, YAMAGUCHI T, ISHIZAKA M, ENDO M, SUDA H, NAGAI K, SUNOHARA Y, TOKI S, UCHINO A, TOMINAGA T . CYP 81A P450s are involved in concomitant cross-resistance to acetolactate synthase and acetyl-CoA carboxylase herbicides in Echinochloa phyllopogon. New Phytologist, 2019,221(4):2112-2122. |
[50] | NARUSAKA M, SEKI M, UMEZAWA T, ISHIDA J, NAKAJIMA M, ENJU A, SHINOZAKI K . Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 2004,55(3):327-342. |
[51] | ZIMMERLIN A, DURST F . Aryl hydroxylation of the herbicide diclofop by a wheat cytochrome P450 monooxygenase: substrate specificity and physiological activity. Plant Physiology, 1992,100(2):874-881. |
[52] | BAEK Y S, GOODRICH L V, BROWN P J, JAMES B T, MOOSE S P, LAMBERT K N, RIECHERS D E . Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain sorghum. Frontiers in Plant Science, 2019,10:192. |
[53] | GAINES T A, LORENTZ L, FIGGE A, HERRMANN J, MAIWALD F, OTT M C, HAN H, BUSI R, YU Q, POWLES S B, BEFFA R . RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. The Plant Journal, 2014,78(5):865-876. |
[54] | CUMMINS I, WORTLEY D J, SABBADIN F, HE Z, COXON C R, STRAKER H E, SELLARS J D, KNIGHT K, EDWARDS L, HUGHES D, KAUNDUN S S, HUTCHINGS S J, STEEL P G, EDWARDS R . Key role for a glutathione transferase in multiple- herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the USA, 2013,110(15):5812-5817. |
[55] | OOSTERHUIS B, VUKMAN K, VÁGI E, GLAVINAS H, JABLONKAI I, KRAJCSI P . Specific interactions of chloroacetanilide herbicides with human ABC transporter proteins. Toxicology, 2008,248(1):45-51. |
[56] | MENG J J, QIN Z W, ZHOU X Y, XIN M . An ATP-binding cassette transporter gene from Cucumis Sativus L., Csabc19, is involved in propamocarb stress in Arabidopsis thaliana. Plant molecular Biology Reporter, 2016,34(5):947-960. |
[57] | MOREIRA L F, ZOMER S J, MARQUES S M . Modulation of the multixenobiotic resistance mechanism in Daniorerio hepatocyte culture (ZF-L) after exposure to glyphosate and Roundup®. Chemosphere, 2019,228:159-165. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[3] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[4] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[5] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[6] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[7] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[8] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[9] | 李恒,字向东,王会,熊燕,吕明杰,刘宇,蒋旭东. 基于全基因组重测序的山羊产羔数性状关键调控基因的筛选[J]. 中国农业科学, 2022, 55(23): 4753-4768. |
[10] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[11] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[12] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
[13] | 常立国,何坤辉,刘建超. 多环境下玉米保绿相关性状遗传位点的挖掘[J]. 中国农业科学, 2022, 55(16): 3071-3081. |
[14] | 郭淑青,宋慧,柴少华,郭岩,石兴,杜丽红,邢璐,解慧芳,张扬,李龙,冯佰利,刘金荣,杨璞. 谷子生育期及穗相关性状的QTL定位[J]. 中国农业科学, 2022, 55(15): 2883-2898. |
[15] | 李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(13): 2485-2499. |
|