[1] 任洪艳, 孙霞, 郑成淑, 王文莉, 孙宪芝, 束怀瑞. 利用 cDNA-AFLP 技术筛选菊花开花相关基因. 中国农业科学, 2011, 44(16): 3386-3394.
Ren H Y, Sun X, Zheng C S, WANG W L, Sun X Z, Shu H R. Differential analysis of flowering related genes by cDNA-AFLP in chrysanthemum. Scientia Agricultura Sinica, 2011, 44(16): 3386-3394. (in Chinese)
[2] 林桂玉, 黄在范, 张翠华, 郑成淑. 菊花花芽分化期超微弱发光及生理代谢的变化. 园艺学报, 2008, 35(12): 1819-1824.
Lin G Y, Huang Z F, Zhang C H, Zheng C S. Changes in ultra weak uminescence intensity, respiration rate and physiological metabolism of chrysanthemum during floral differentiation. Acta Horticulturae Sinica, 2008, 35(12): 1819-1824. (in Chinese)
[3] 郭春晓, 郑成淑, 谢红英, 徐瑾, 马海燕. 盐胁迫下外源水杨酸对菊花根系离子含量和 ATPase及PPase 活性的影响. 园艺学报, 2011, 38(6): 1167-1172.
GUO C X, ZHENG C S, XIE H Y, XU J, MA H Y. Effects of exogenous salicylic acid on ion content, activities of ATPase and PPase of the roots in chrysanthemum under salt stress. Acta Horticulturae Sinica, 2011, 38(6): 1167-1172. (in Chinese)
[4] Forde B G. Nitrogen signaling pathways shaping root system architecture: an update. Current Opinion in Plant Biology, 2014, 21: 30-36.
[5] 姜天华, 单佩佩, 黄在范, 温立柱, 孙翠慧, 刘坤, 郑成淑. 施用氮肥对油用牡丹叶片氮素吸收积累与籽粒品质的影响. 应用生态学报, 2016, 27(10): 3257-3263.
JIANG T H, ShAN P P, HUANG Z F, WEN L Z, SUN C H, LIU K, ZHENG C S. Effects of nitrogen fertilization application on the nitrogen uptake, accumulation, and yield quality of oil peony. Chinese Journal of Applied Ecology, 2016, 27(10):3257-3263. (in Chinese)
[6] Fitter M, Abram B, Lorenzo H. The nutritional control of root development. Plast Soil, 2010, 232: 51-68.
[7] 刘大同, 荆彦平, 李栋梁, 余徐润, 王忠. 植物侧根发育的研究进展. 植物生理学报, 2013, 49(11): 1127-1137.
LIU D T, JING Y P, LI D L, YU X R, WANG Z. Research advances in plant lateral root development. Plant Physiology Journal, 2013, 49(11): 1127-1137. (in Chinese)
[8] Walch L, Gan Y, Filleur S, Forde B G. Nitrogen signaling and the regulation of root development. Aspects Applied Biology, 2005, 73: 99-106.
[9] Aloni R, Aloni E, Langhans M, Ullrich C I. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany, 2006, 97(5): 883-893.
[10] Xu N, Wang R C, Zhao L F, Zhang C F, Li Z H, Zhao L, Liu F, Guan P Z, Chu Z H, Crawford N M, Wang Y. The arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. The Plant Cell, 2016, 28(2): 485-504.
[11] 郭春晓,王文莉,郑成淑,时连辉,束怀瑞. 盐胁迫下外源 SA 对菊花体内离子含量和净光合速率的影响. 中国农业科学, 2011, 44(15): 3185-3192.
GUO C X, WANG W L, ZHENG C S, SHI L H, SHU H R. Effects of exogenous salicylic acid on ions contents and net photosynthetic rate in chrysanthemum under salt stress. Scientia Agricultura Sinica, 2011, 44(15):3185-3192. (in Chinese)
[12] 孙霞, 王秀峰, 郑成淑, 邢世岩, 束怀瑞. 菊花节律钟输出基因CmGI(GIGANTEA)的cDNA全长克隆、序列信息及定量表达分析. 中国农业科学, 2012, 45(13): 2690-2703.
SUN X, WANG X F, ZHENG C S, XING S Y, SHU H R. The cDNA cloning and analysis of sequence information and quantitative express of chrysanthemum rhythms clock output gene CmGI (GIGANTEA). Scientia Agricultura Sinica, 2012, 45(13): 2690-2703. (in Chinese)
[13] Fan H M, Li Y Y, Sun X, Wang W L, Sun X Z, Zheng C S. Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 2014, 177(2): 118-123.
[14] 顾春笋. 菊花CmNRT1.1基因的克隆和功能鉴定[D]. 南京: 南京农业大学, 2012.
Gu C S. Cloning and functional analysis of CmNRTs in chrysanthemum [D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[15] 任同辉. 萝卜硝酸盐含量分析的初步研究[D]. 南京: 南京农业大学, 2005.
REN T H. Primary studies on nitrate content in radish (Raphanus sativus L.) [D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
[16] 林贵玉, 郑成淑, 孙宪芝, 王文莉. 光周期对菊花花芽分化和内源激素的影响. 山东农业科学, 2008(1): 35-39.
Lin G Y, Zheng C S, Sun X Z, Wang W L. Effects of photoperiod on floral bud differentiation and contents of endogenous hormonesin chrysanthemum. Shandong Agricultural Sciences, 2008(1): 35-39. (in Chinese)
[17] 田素波, 林桂玉, 郑成淑, 孙霞, 任洪艳, 温立柱. 菊花花发育基因CmCO和CmFT的克隆与表达分析. 园艺学报. 2011, 38(6): 1129-1138.
TIAN S B, LIN G Y, ZHENG C S, SUN X, REN H Y, WEN L Z. Cloning and expression of CmCO and CmFT of floral development genes in chrysanthemum. Acta Horticulturae Sinica, 2011, 38(6): 1129-1138. (in Chinese)
[18] Vidal E A, Araus V, Lu C, Parry G, Green P J, Coruzzi G M, Gutierrez R A. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proceedings of the National Academy Sciences of USA, 2015, 107: 4477-4482.
[19] Desmet L, Tetsumura T, Derybel B, Frey N, Laplaze L, Casimiro L, Swarup R, Naudts M, Vanneste S, Audenaert D. Auxin dependent regulation of lateral root positioning in the basal meristem of Arabidopsis thaliana. Development, 2007, 134: 681-690.
[20] Zhang H M, Andrea J, Peter W B, Brain G F. Dual pathways for regulation of root branching by nitrate. Plant Biology, 1999, 96(11): 6529-6534.
[21] Datta S, Hettiarachchi G H, Deng X W, Holma M. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. The Plant Cell, 2006, 18(1): 70-84.
[22] Zhang H M, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279: 407-409.
[23] 李丽. 氮素浓度及形态对叶用萝卜硝酸盐含量的影响[D]. 武汉: 华中农业大学, 2004.
LI L. Effects of different nitrogen concentration and form on nitrate in radish leaf [D]. Wuhan: Huazhong Agricultural University, 2004. (in Chinese)
[24] Bouguyon E, Brun F, Meynard D, Kubes M, Prevent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zazimalova E, Hoyerova K, Nacry P, Gojon A. Multiple mechanisms of nitrate sensing by Arabidopsis thaliana nitrate transceptor NRT1.1. Nature plants, 2015, 1: 15015.
[25] Krusell L, Madsen H L, Sato S, Aubert G, Genua A, Szczyglowsky K, Duc G, Kaneko T. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420: 422-425.
[26] Yu L H, Miao Z Q, Qi G F, Wu J, Cai X T, Mao J L, Xiang C B. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Molecular Plant, 2014, 7(11): 1653-1669.
[27] Silva S W, Seabra A R, Leitao J N, Carvalho H G. Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula L. Plant Science, 2015, 240: 98-108.
[28] Fukaki H, Tasaka M. Hormone interactions lateral foot formation. Plant Molecular Biology, 2009, 69: 437-449.
[29] Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell, 2010, 18(6): 927-937.
[30] Gruber B D, Giehl R F, Friedel S, Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Journal, 2013, 163(1): 161-179. |