[1] 蒯传化, 刘三军, 吴国良, 杨朝选, 陈勇朋, 王鹏, 刘崇怀, 于巧丽. 葡萄日灼病阈值温度及主要影响因子分析. 园艺学报, 2009, 36(8): 1093-1098.
Kuai C H, Liu S J, Wu G L, Yang C X, Chen Y P, Wang P, Liu C H, Yu Q L. Analysis of the main factors and threshold temperature on Vitis berry sunburn. Acta Horticulturae Sinica, 2009, 36(8): 1093-1098. (in Chinese)
[2] 杨金虎, 江志红, 魏锋. 近 45 年来中国西北年极端高、低温的变化及对区域性增暖的响应. 干旱区地理, 2006, 29: 625-631.
Yang J H, Jiang Z H, Wei F. Variability of extreme high temperatureand low temperature and their response to regional warming in Northwest China in recent 45 years. Arid Land Geography, 2006, 29:625-631. (in Chinese)
[3] Powers E T, Morimoto R I, Dillin A, Kelly J W, Balch W E. Biological and chemical approaches to diseases of proteostasis deficiency. Annual Review of Biochemistry, 2009, 78: 959-991.
[4] Hartl F U, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475(7356): 324-332.
[5] Kobayashi M, Katoh H, Takayanagi T, Suzuki S. Characterization of thermotolerance-related genes in grapevine (Vitis vinifera). Journal of Plant Physiology, 2010, 167(10): 812-819.
[6] Banilas G, Korkas E, Englezos V, Nisiotou A A, Hatzopoulos P. Genome-wide analysis of the heat shock protein 90 gene family in grapevine (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 2012, 18(1): 29-38.
[7] Zha Q, Xi X J, Jiang A L, Tian Y H. High temperature affects photosynthetic and molecular processes in field-cultivated Vitis vinifera L.× Vitis labrusca L. Photochemistry and Photobiology, 2016, 92(3): 446-454.
[8] Heckathorn S A, Ryan S L, Baylis J A, Wang D, Hamilton III E W, Cundiff L, Luthe D S.In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Functional Plant Biology, 2002, 29(8): 935-946.
[9] Wang D, Luthe D S. Heat sensitivity in a bent grass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiology, 2003, 133(1): 319-327.
[10] Qiao X, Li M, Li L, Yin H, Wu J Y, Zhang S L. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biology, 2015, 15(1): 12.
[11] Lin Q, Jiang Q, Lin J, Wang D L, Li S H, Liu C R, Sun C D, Chen K S. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit. Gene, 2015, 559(2): 129-136.
[12] Giorno F, Guerriero G, Baric S, Mariani C. Heat shock transcriptional factors in Malus domestica:identification, classification and expression analysis. BMC Genomics, 2012, 13(1): 639.
[13] Tarora K, Tamaki M, Shudo A, Urasaki N, Matsumura H, Adaniya S. Cloning of a heat stress transcription factor, CphsfB1, that is constitutively expressed in radicles and is heat-inducible in the leaves of Carica papaya. Plant Cell, Tissue and Organ Culture, 2010, 102(1): 69-77.
[14] Kotak S, Larkindale J, Lee U, Koskull-Döring P, Vierling E, Scharf K D. Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007, 10(3): 310-316.
[15] Pillet J, Egert A, Pieri P, Lecourieux F, Kappel C, Charon J, Gomès E, Keller F, Delrot S, Lecourieux D. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant and Cell Physiology, 2012, 53(10): 1776-1792.
[16] Vandesompele J, De Preter K, Pattyn F, Poppe B, Roy N V, Paepe A D, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 2002, 3(7): 1-12.
[17] 查倩, 奚晓军, 蒋爱丽, 田益华, 王世平. 葡萄实时定量PCR中稳定内参基因的筛选. 果树学报, 2016, 33(3): 268-274.
Zha Q, Xi X J, Jiang A L, Tian Y H, Wang S P. Identification of appropriate reference gene by real-time quantitative PCR in grape. Journal of Fruit Science, 2016, 33(3): 268-274. (in Chinese)
[18] Deng W, Wang Y, Liu Z, Chen H, Xu Y. HemI: a toolkit for illustrating heatmaps. PLoS One, 2014, 9: e111988.
[19] Hren M, Nikoli? P, Rotter A, Ermacora P. 'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics, 2009, 10(1): 460.
[20] Carvalho L C, Coito J L, Colaço S, Sangiogo M, Amâncio S. Heat stress in grapevine: the pros and cons of acclimation. Plant Cell Environment, 2015, 38: 777-789.
[21] Guillaumie S, Ilg A, Réty S, Brette M, Trossat-Magnin C, Decroocq S, Léon C, Keime C, Ye T, Baltenweck- Guyot R, Claudel P, Bordenave L, Vanbrabant S, Duchêne E, Delrot S, Darriet P, Hugueney P, Gomès E. Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant Physiology, 2013, 162: 604-615.
[22] Shultz R W, Settlage S B, Hanley-Bowdoin L, Thompson W F. A trichloroacetic acid-acetone method greatly reduces infrared auto fluorescence of protein extracts from plant tissue. Plant Molecular Biology Reporter, 2005, 23: 405-409.
[23] Wang L J, Fan L, Loescher W, Duan W, Liu G J, Cheng J S, Luo H B, Li S H. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 2010, 10: 34.
[24] 万丙良, 查中萍, 戚华雄. 钙依赖的蛋白激酶与植物抗逆性. 生物技术通报, 2009(1): 7-10.
Wang B L, Zha Z P, Qi H X. Calcium-dependent protein kinases (CDPKs) and plant tolerance to environmental stresses. Biotechnology Bulletin, 2009(1): 7-10. (in Chinese)
[25] 裴丽丽, 郭玉华, 徐兆师, 李连城, 陈明, 马有志. 植物逆境胁迫相关蛋白激酶的研究进展. 西北植物学报, 2012, 32(5): 1052-1061.
Pei L L, Guo Y H, Xu Z S, Li L C, Chen M,Ma Y Z. Research progress on stress-related protein kinases in plants. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(5): 1052-1061. (in Chinese)
[26] 查倩,奚晓军, 蒋爱丽, 王世平, 田益华. 高温条件下‘巨玫瑰’葡萄品种叶片表型、可溶性糖和叶绿素荧光特性的研究. 中国农学通报, 2015, 31(25): 118-123.
Zha Q, Xi X J, Jiang AL, Wang S P, Tian Y H. Study on leaf phenotype, soluble sugar and chlorophyll fluorescence characteristics response to heat stress in ‘Jumeigui’ Grapes. Chinese Agricultural Science Bulletin, 2015, 31(25): 118-123. (in Chinese)
[27] 郭洪雪, 宋希云, 燕增文, 裴玉贺,王海娟,刘兰浩. 高温胁迫对小麦幼苗几个生理生化指标的影响. 华北农学报, 2007, 22(S1): 71-74.
Guo H X, Song X Y, Yan Z W, Pei Y H, Wang H J, Liu L H. Effects of heat stress on several physiological and biochemical indexes of wheat. Acta Agriculture Boreali-Sinica, 2007, 22(S1): 71-74. (in Chinese)
[28] 段九菊, 王云山, 康黎芳, 张超, 王曼, 杜少敏, 曹冬梅. 高温胁迫对观赏凤梨叶片抗氧化系统和渗透调节物质积累的影响. 中国农学通报, 2010, 26(8): 164-169.
Duan J J, Wang Y S, Kang L F, Zhang C, Wang M, Du S M, Cao D M. Effects of high temperature stress on antioxidant system and accumulation of osmotic adjustment substance of bromeliaceae. Chinese Agricultural Science Bulletin, 2010, 26(8): 164-169. (in Chinese)
[29] 周斯建, 义鸣放, 穆鼎. 高温胁迫下铁炮百合幼苗形态及生理反应的初步研究. 园艺学报, 2005, 32(1): 145-147.
Zhou S J, Yi M F, Mu D. The preliminary research on the morphological and physiological response to heat stress of Lilium longiflorum seedlings. Acta Horticulturae Sinica, 2005, 32(1): 145-147. (in Chinese)
[30] 张俊环. 葡萄幼苗与果实对温度逆境的交叉适应性及其细胞学机制研究[D]. 北京: 中国农业大学, 2005.
Zhang J H. Studies on cell physiology of cross adaptation to temperature stress in young grape plants and berries [D]. Beijing: China Agricultural University, 2005. (in Chinese)
[31] Zha Q, Xi X J, Jiang AL, Tian Y H, Wang S P. Changes in the protective mechanism of photosystem II and molecular regulation in response to high temperature stress in grapevines. Plant Physiology and Biochemistry, 2016, 101: 43-53.
[32] Luo H B, Ma L, Xi H F, Duan W, Li S H, Loescher W, Wang J F, Wang L J. Photosynthetic response to heat treatments at different temperatures and following recovery in grapevine (Vitis amurenisi L.) leaves. PLos One, 2011, 6: e23033.
[33] Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants. Physiologia Plantarum, 1994, 92(4): 696-717.
[34] 杨献光, 梁卫红, 齐志广, 马闻师, 沈银柱. 植物非生物胁迫应答的分子机制. 麦类作物学报, 2006, 26(6): 158-161.
Yang X G, Liang W H, Qi Z G, Ma W S, Shen Y Z. Molecular mechanisms of plant response to abiotic stresses. Journal of Triticeae Crops, 2006, 26(6): 158-161. (in Chinese)
[35] Anderson J, McCollum G, Roberts W. High temperature acclimation in pepper leaves. HortScience, 1990, 25(10): 1272-1274.
[36] 吴韩英, 寿森炎, 朱祝军, 杨信廷. 高温胁迫对甜椒光合作用和叶绿素荧光的影响. 园艺学报, 2001, 28(6): 517-521.
Wu H Y, Shou S Y, Zhu Z J, Yang X T. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper ( Capsicum fructescens L.). Acta Horticulturae Sinica, 2001, 28(6): 517-521. (in Chinese)
[37] 张俊环, 黄卫东. 植物对温度逆境的交叉适应性及其机制研究进展. 中国农学通报, 2003, 19(2): 95-100.
Zhang J H, Huang W D. Research advances on mechanism of cross-adaptation to temperature stresses in plants. Chinese Agriculture Science Bulletin, 2003, 19(2): 95-100. (in Chinese)
[38] Horowitz M. From molecular and cellular to integrative heat defense during exposure to chronic heat. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2002, 131(3): 475-483.
[39] Meza-Herrera C A, Martínez L, Aréchiga Archiga C, Bafiuelos R, Rincon R M, Urrutia J, Salinas H, Mellado M. Circannual identification and quantification of constitutive heat shock proteins (HSP 70) in goats. Journal of Applied Animal Research, 2006, 29(1): 9-12.
[40] Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends in Biochemical Sciences, 2012, 37(3): 118-125.
[41] 陈培琴,郁松林, 詹妍妮. 茉莉酸和高温锻炼对葡萄幼苗耐热性及其抗氧化酶的影响. 生命科学研究, 2006, 10(3): 238-243.
Chen P Q, Yu S L, Zhan Y N. Effects of jasmonate acid and heat acclimation on thermotolerance and antioxidant enzymes of young grape plants. Life Science Research, 2006, 10(3) 238-243. (in Chinese) |