[1] |
中国科学院地理科学与资源研究所. 2020东北黑土地白皮书. 黑龙江: 中国科学院, 2021.
|
|
Institute of Geographic Sciences and Natural Resources Research. 2020 Northeast Black Soil White Paper. Heilongjiang: Chinese Academy of Sciences, 2021. (in Chinese)
|
[2] |
汪景宽, 徐香茹, 裴久渤, 李双异. 东北黑土地区耕地质量现状与面临的机遇和挑战. 土壤通报, 2021, 52(3): 695-701.
|
|
WANG J K, XU X R, PEI J B, LI S Y. Current situations of black soil quality and facing opportunities and challenges in NorthEast China. Chinese Journal of Soil Science, 2021, 52(3): 695-701. (in Chinese)
|
[3] |
张瑞, 杜国明, 张树文. 1986—2020年东北典型黑土区耕地资源时空变化及其驱动因素. 资源科学, 2023, 45(5): 939-950.
doi: 10.18402/resci.2023.05.05
|
|
ZHANG R, DU G M, ZHANG S W. Spatiotemporal changes and the driving factors of cultivated land resources of the typical black soil region in NorthEast China from 1986 to 2020. Resources Science, 2023, 45(5): 939-950. (in Chinese)
doi: 10.18402/resci.2023.05.05
|
[4] |
祝贞科, 肖谋良, 魏亮, 王双, 丁济娜, 陈剑平, 葛体达. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策. 中国生态农业学报(中英文), 2022, 30(4): 592-602.
|
|
ZHU Z K, XIAO M L, WEI L, WANG S, DING J N, CHEN J P, GE T D. Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality. Chinese Journal of Eco-Agriculture, 2022, 30(4): 592-602. (in Chinese)
|
[5] |
LIU K L, HUANG J, LI D M, YU X C, YE H C, HU H W, HU Z H, HUANG Q H, ZHANG H M. Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China. Journal of Integrative Agriculture, 2019, 18(6): 1348-1359.
|
[6] |
LI C, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776.
|
[7] |
LI C S, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9777-9783.
|
[8] |
PARTON W J, SCHIMEL D S, COLE C V, OJIMA D S. Analysis of factors controlling soil organic matter levels in great Plains grasslands. Soil Science Society of America Journal, 1987, 51(5): 1173-1179.
|
[9] |
JENKINSON D S, RAYNER J H. The turnover of soil organic matter in some of the rothamsted classical experiments. Soil Science, 1977, 123(5): 298-305.
|
[10] |
WILLIAMS J R. The erosion-productivity impact calculator (EPIC) model: a case history. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 1990, 329(1255): 421-428.
|
[11] |
MCCOWN R L, HAMMER G L, HARGREAVES J N G, HOLZWORTH D P, FREEBAIRN D M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 1996, 50(3): 255-271.
|
[12] |
GARSIA A, MOINET A, VAZQUEZ C, CREAMER R E, MOINET G Y K. The challenge of selecting an appropriate soil organic carbon simulation model: A comprehensive global review and validation assessment. Global Change Biology, 2023, 29(20): 5760-5774.
doi: 10.1111/gcb.16896
pmid: 37571868
|
[13] |
WANG S C, ZHAO Y W, WANG J Z, GAO J J, ZHU P, CUI X A, XU M G, ZHOU B K, LU C G. Estimation of soil organic carbon losses and counter approaches from organic materials in black soils of northeastern China. Journal of Soils and Sediments, 2020, 20(3): 1241-1252.
|
[14] |
|
|
WANG W J, LIANG A Z, ZHANG Y, CHEN X W, HUANG D D. Model simulation research of soil organic carbon dynamics of long-term conservation tillage in black soil. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960. doi: 10.3864/j.issn.0578-1752.2024. 10.008. (in Chinese)
|
[15] |
SHIRATO Y, YOKOZAWA M. Applying the rothamsted carbon model for long-term experiments on Japanese paddy soils and modifying it by simple tuning of the decomposition rate. Soil Science and Plant Nutrition, 2005, 51(3): 405-415.
|
[16] |
JIANG G Y, SHIRATO Y, XU M G, YAGASAKI Y, HUANG Q H, LI Z Z, NIE J, SHI X J. Testing the modified Rothamsted Carbon Model for paddy soils against the results from long-term experiments in Southern China. Soil Science and Plant Nutrition, 2013, 59(1): 16-26.
|
[17] |
JORDON M W, SMITH P, LONG P R, BÜRKNER P C, PETROKOFSKY G, WILLIS K J. Can Regenerative Agriculture increase national soil carbon stocks? Simulated country-scale adoption of reduced tillage, cover cropping, and ley-arable integration using RothC. The Science of the Total Environment, 2022, 825: 153955.
|
[18] |
WEIHERMÜLLER L, GRAF A, HERBST M, VEREECKEN H. Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. European Journal of Soil Science, 2013, 64(5): 567-575.
|
[19] |
HAO X X, WANG S Y, HAN X Z, GUO Z Y, LI L J. A dataset of topsoil nutrient content observed by Hailun Agroecosystem Experimental Station, CAS (2004-2015). China Scientific Data, 2020, 5(1): 1-14.
|
[20] |
董桂军, 陈兴良, 于洪娇, 洪秀杰, 袁媛, 申贵男, 晏磊, 王彦杰, 王伟东. 寒区长期秸秆全量还田对水稻土理化特性的影响. 土壤与作物, 2019, 8(3): 251-257.
|
|
DONG G J, CHEN X L, YU H J, HONG X J, YUAN Y, SHEN G N, YAN L, WANG Y J, WANG W D. Effects of long-term all rice straw returning on soil physio-chemical properties in cold region. Soils and Crops, 2019, 8(3): 251-257. (in Chinese)
|
[21] |
LIN Z Q, LU X Q, XU Y F, SUN W J, YU Y Q, ZHANG W, MISHRA U, KUZYAKOV Y, WANG G C, QIN Z C. Increased straw return promoted soil organic carbon accumulation in China’s croplands over the past 40 years. Science of the Total Environment, 2024, 945: 173903.
|
[22] |
SIERRA C A, MÜLLER M, TRUMBORE S E. Models of soil organic matter decomposition: The SoilR package, version 1.0. Geoscientific Model Development, 2012, 5(4): 1045-1060.
|
[23] |
R Core Team (2022). R: A language and environment for statisticalcomputing. R Foundation for Statistical Computing, Vienna, Austria.
|
[24] |
ALLEN R G, PEREIRA L S, RAES D, SMITH M. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, 1998.
|
[25] |
ZHAO Y C, WANG M Y, HU S J, ZHANG X D, OUYANG Z, ZHANG G L, HUANG B, ZHAO S W, WU J S, XIE D T, ZHU B, YU D S, PAN X Z, XU S X, SHI X Z. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4045-4050.
|
[26] |
FALLOON P, SMITH P, COLEMAN K, MARSHALL S. Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biology and Biochemistry, 1998, 30(8/9): 1207-1211.
|
[27] |
姜桂英. 中国农田长期不同施肥的固碳潜力及预测[D]. 北京: 中国农业科学院, 2013.
|
|
JIANG G Y. Carbon sequestration potential and prediction of long-term different fertilization in farmland of China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
|
[28] |
YAO Z Y, ZHANG D B, LIU N, YAO P W, ZHAO N, LI Y Y, ZHANG S Q, ZHAI B N, HUANG D L, WANG Z H, CAO W D, ADL S, GAO Y J. Dynamics and sequestration potential of soil organic carbon and total nitrogen stocks of leguminous green manure-based cropping systems on the Loess Plateau of China. Soil and Tillage Research, 2019, 191: 108-116.
|
[29] |
ROBERTSON F, NASH D. Limited potential for soil carbon accumulation using current cropping practices in Victoria, Australia. Agriculture, Ecosystems & Environment, 2013, 165: 130-140.
|
[30] |
SHIRATO Y, YAGASAKI Y, NISHIDA M. Using different versions of the Rothamsted Carbon model to simulate soil carbon in long-term experimental plots subjected to paddy-upland rotation in Japan. Soil Science and Plant Nutrition, 2011, 57(4): 597-606.
|
[31] |
WANG J, LU C, XU M, ZHU P, HUANG S, ZHANG W, PENG C, CHEN X, WU L. Soil organic carbon sequestration under different fertilizer regimes in north and NorthEast China: RothC simulation. Soil Use and Management, 2013, 29(2): 182-190.
|
[32] |
杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展. 应用生态学报, 2024, 35(1): 111-123.
doi: 10.13287/j.1001-9332.202401.011
|
|
YANG Y, WANG B R, DOU Y X, XUE Z J, SUN H, WANG Y Q, LIANG C, AN S S. Advances in the research of transformation and stabilization of soil organic carbon from plant and microbe. Chinese Journal of Applied Ecology, 2024, 35(1): 111-123. (in Chinese)
doi: 10.13287/j.1001-9332.202401.011
|
[33] |
HUANG Y, YU Y Q, ZHANG W, SUN W J, LIU S L, JIANG J, WU J S, YU W T, WANG Y, YANG Z F. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 2009, 149(1): 106-129.
|
[34] |
SHEN Q S, LIU X B, ZHANG X Y. Evaluating soil organic carbon changes after 16 years of soil relocation in Chinese Mollisols by optimizing the input data of the RothC model. Soil and Tillage Research, 2023, 225: 105561.
|
[35] |
SKJEMSTAD J O, SPOUNCER L R, COWIE B, SWIFT R S. Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Soil Research, 2004, 42(1): 79.
|
[36] |
ZIMMERMANN M, LEIFELD A J, SCHMIDT A M W I, SMITH B P, FUHRER C J. Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science, 2007, 58(3): 658-667.
|
[37] |
XU X L, LIU W, KIELY G. Modeling the change in soil organic carbon of grassland in response to climate change: Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model. Agriculture, Ecosystems & Environment, 2011, 140(3/4): 372-381.
|
[38] |
HERBST M, WELP G, MACDONALD A, JATE M, HÄDICKE A, SCHERER H, GAISER T, HERRMANN F, AMELUNG W, VANDERBORGHT J. Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states. Geoderma, 2018, 314: 37-46.
|
[39] |
梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 2021, 51(5): 680-695.
|
|
LIANG C, ZHU X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica (Terrae), 2021, 51(5): 680-695. (in Chinese)
|
[40] |
朱雪峰, 孔维栋, 黄懿梅, 肖可青, 罗煜, 安韶山, 梁超. 土壤微生物碳泵概念体系2.0. 应用生态学报, 2024, 35(1): 102-110.
doi: 10.13287/j.1001-9332.202401.018
|
|
ZHU X F, KONG W D, HUANG Y M, XIAO K Q, LUO Y, AN S S, LIANG C. Soil microbial carbon pump conceptual framework 2.0. Chinese Journal of Applied Ecology, 2024, 35(1): 102-110. (in Chinese)
doi: 10.13287/j.1001-9332.202401.018
|