[1] |
CHEN J G, LAI Q, ZENG B Q, GUO L B, YE G Y. Progress on molecular mechanism of aluminum resistance in rice. Rice Science, 2020, 27(6): 454-467.
doi: 10.1016/j.rsci.2020.09.003
|
[2] |
赵学强, 潘贤章, 马海艺, 董晓英, 车景, 王超, 时玉, 柳开楼, 沈仁芳. 中国酸性土壤利用的科学问题与策略. 土壤学报, 2023, 60(5): 1248-1263.
|
|
ZHAO X Q, PAN X Z, MA H Y, DONG X Y, CHE J, WANG C, SHI Y, LIU K L, SHEN R F. Scientific issues and strategies of acid soil use in China. Acta Pedologica Sinica, 2023, 60(5): 1248-1263. (in Chinese)
|
[3] |
LI X W, LI Y L, MAI J W, TAO L, QU M, LIU J Y, SHEN R F, XU G L, FENG Y M, XIAO H D, WU L S, SHI L, GUO S X, LIANG J, ZHU Y Y, HE Y M, BALU¡KA F, SHABALA S, YU M. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport. Plant Physiology, 2018, 177(3): 1254-1266.
|
[4] |
YANG G, QU M, XU G L, LI Y L, LI X W, FENG Y M, XIAO H D, HE Y M, SHABALA S, DEMIDCHIK V, LIU J Y, YU M. pH-Dependent mitigation of aluminum toxicity in pea (Pisum sativum) roots by boron. Plant Science, 2022, 318: 111208.
|
[5] |
冯英明, 罗功荣, 曲梅, 玄祖迎, 李学文, 麦靖文, 喻敏. 硼对豌豆根尖细胞壁组分对铝吸附解吸的影响. 植物营养与肥料学报, 2022, 28(10): 1893-1900.
|
|
FENG Y M, LUO G R, QU M, XUAN Z Y, LI X W, MAI J W, YU M. Effects of boron on aluminum adsorption and desorption of cell wall components of pea root tips. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1893-1900. (in Chinese)
|
[6] |
TAO L, XIAO X Y, HUANG Q Y, ZHU H, FENG Y M, LI Y L, LI X W, GUO Z S, LIU J Y, WU F H, et al. Boron supply restores aluminum-blocked auxin transport by the modulation of PIN2 trafficking in the root apical transition zone. The Plant Journal, 2023, 114(1):176-192.
|
[7] |
胡湘云, 王奕文, 方幽文, 邵烨瑶, 姚慧, 唐星宇, 连旖晴, 谭莹, 朱怡杰, 江帆. 酸性土壤下缓解大豆铝胁迫的研究进展. 科学通报, 2023, 68(33): 4517-4531.
|
|
HU X Y, WANG Y W, FANG Y W, SHAO Y Y, YAO H, TANG X Y, LIAN Y Q, TAN Y, ZHU Y J, JIANG F, et al. Research progress on alleviating aluminum stress of soybean in acidic soil. Chinese Science Bulletin, 2023, 68(33): 4517-4531. (in Chinese)
|
[8] |
WU H Y, YANG F, LI H P, LI Q B, ZHANG F L, BA Y, CUI L X, SUN L L, LV T C, WANG N, ZHU J Y. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. International Journal of Environmental Health Research, 2020, 30(2): 174-186.
doi: 10.1080/09603123.2019.1584666
pmid: 30810352
|
[9] |
JALILI S, EHSANPOUR A A, JAVADIRAD S M. The role of melatonin on caspase-3-like activity and expression of the genes involved in programmed cell death (PCD) induced by in vitro salt stress in alfalfa (Medicago sativa L.) roots. Botanical Studies, 2022, 63(1): 19.
|
[10] |
HUANG J J, HAN R Z, JI F, YU Y Y, WANG R Y, HAI Z X, LIANG W H, WANG H H. Glucose-6-phosphate dehydrogenase and abscisic acid mediate programmed cell death induced by aluminum toxicity in soybean root tips. Journal of Hazardous Materials, 2022, 425: 127964.
|
[11] |
DONIAK M, BARCISZEWSKA M Z, KAŹMIERCZAK J, KAŹMIERCZAK A. The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Reports, 2014, 33(12): 2063-2076.
|
[12] |
FENG Y M, LI X W, GUO S X, CHEN X Y, CHEN T X, HE Y M, SHABALA S, YU M. Extracellular silica nanocoat formed by layer-by-layer (LBL) self-assembly confers aluminum resistance in root border cells of pea (Pisum sativum). Journal of Nanobiotechnology, 2019, 17(1): 53.
doi: 10.1186/s12951-019-0486-y
pmid: 30992069
|
[13] |
XIAO Z X, YE M J, GAO Z X, JIANG Y S, ZHANG X Y, NIKOLIC N, LIANG Y C. Silicon reduces aluminum-induced suberization by inhibiting the uptake and transport of aluminum in rice roots and consequently promotes root growth. Plant and Cell Physiology, 2022, 63(3): 340-352.
doi: 10.1093/pcp/pcac001
pmid: 34981810
|
[14] |
NABIPOUR SANJBOD R, CHAMANI E, POURBEYRAMI HIR Y, ESTAJI A. Investigation of the cell structure and organelles during autolytic PCD of Antirrhinum majus “Legend White” petals. Protoplasma, 2023, 260(2): 419-435.
|
[15] |
LEE J, CHOI J, PARK J H, KIM M H, HONG D, CHO H, YANG S H, CHOI I S. Cytoprotective silica coating of individual mammalian cells through bioinspired silicification. Angewandte Chemie International Edition, 2014, 53(31): 8056-8059.
|
[16] |
HE C W, MA J, WANG L J. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytologist, 2015, 206(3): 1051-1062.
doi: 10.1111/nph.13282
pmid: 25615017
|
[17] |
FENG Y M, HAN H X, NONG W, TANG J, CHEN X Y, LI X W, SHI L, KRESLAVSKI V D, ALLAKHVERDIEV S I, SHABALA S, SHI W M, YU M. The biomineralization of silica induced stress tolerance in plants: a case study for aluminum toxicity. Plant Signaling & Behavior, 2023, 18(1): 2233179.
|
[18] |
XIA S S, LIU H, CUI Y J, YU H P, RAO Y C, YAN Y P, ZENG D L, HU J, ZHANG G H, GAO Z Y, et al. UDP-N- acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytologist, 2022, 233(1): 344-359.
|
[19] |
TYAGI W, YUMNAM J S, SEN D, RAI M. Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype. Scientific Reports, 2020, 10: 4580.
doi: 10.1038/s41598-020-61305-7
pmid: 32165659
|
[20] |
|
|
LI X D, SHANG Y S, LI S G, CHEN G J, PEI C J, SUN F, XIONG X Q. The mechanism of ectopic expression of Brassica juncea multidrug and toxic compound extrusion(BjMATE) to enhance the resistance to acid and aluminum stress in alfalfa. Scientia Agricultura Sinica, 2020, 53(1): 18-28. doi: 10.3864/j.issn.0578-1752.2020.01.002. (in Chinese)
|
[21] |
ZHANG J, ZOU W H, LI Y, FENG Y Q, ZHANG H, WU Z L, TU Y Y, WANG Y T, CAI X W, PENG L C. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science, 2015, 239: 84-91.
doi: 10.1016/j.plantsci.2015.07.014
pmid: 26398793
|
[22] |
李淑贤, 刘卫国, 高阳, 刘婷, 周涛, 杜勇利, 杨欢, 张浩, 刘俊豆, 杨文钰. 硅对人工荫蔽胁迫下大豆幼苗生长及光合特性的影响. 中国农业科学, 2018, 51(19): 3663-3672. doi: 10.3864/j.issn.0578-1752.2018.19.004.
|
|
LI S X, LIU W G, GAO Y, LIU T, ZHOU T, DU Y L, YANG H, ZHANG H, LIU J D, YANG W Y. Effects of silicon on plant growth and photosynthetic characteristics of soybean seedlings under artificial shade stress. Scientia Agricultura Sinica, 2018, 51(19): 3663-3672. doi: 10.3864/j.issn.0578-1752.2018.19.004. (in Chinese)
|
[23] |
PANG Z H, PENG H Y, LIN S, LIANG Y C. Theory and application of a Si-based defense barrier for plants: Implications for soil-plant- atmosphere system health. Critical Reviews in Environmental Science and Technology, 2024, 54(9): 722-746.
|
[24] |
FENG Y M, KRESLAVSKI V D, SHMAREV A N, IVANOV A A, ZHARMUKHAMEDOV S K, KOSOBRYUKHOV A, YU M, ALLAKHVERDIEV S I, SHABALA S. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants, 2022, 11(14): 1894.
|
[25] |
HUNG K C, WU J H. Characteristics and thermal decomposition kinetics of wood-SiO2composites derived by the Sol-gel process. Holzforschung, 2017, 71(3): 233-240.
|
[26] |
MA J, CAI H M, HE C W, ZHANG W J, WANG L J. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 2015, 206(3): 1063-1074.
doi: 10.1111/nph.13276
pmid: 25645894
|
[27] |
MA J, SHENG H C, LI X L, WANG L J. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. Plant Physiology and Biochemistry, 2016, 104: 71-80.
doi: 10.1016/j.plaphy.2016.03.024
pmid: 27017433
|
[28] |
TARIQ A, GRACIANO C, SARDANS J, ZENG F J, HUGHES A C, AHMED Z, ULLAH A, ALI S, GAO Y J, PEÑUELAS J. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New Phytologist, 2024, 242(3): 916-934.
|
[29] |
施卫明, 郑绍建, 金崇伟, 王萌, 丁忠杰, 李光杰. 植物适应土壤逆境的分子机制研究进展. 植物营养与肥料学报, 2024, 30(7): 1329-1338.
|
|
SHI W M, ZHENG S J, JIN C W, WANG M, DING Z J, LI G J. Advances in molecular mechanisms of plant adaptation to soil stress. Journal of Plant Nutrition and Fertilizers, 2024, 30(7):1329-1338. (in Chinese)
|
[30] |
佟斌, 詹洁, 王爱勤, 肖冬, 何龙飞. miRNA参与高等植物细胞程序性死亡调控作用的研究进展. 分子植物育种, 2022, http://kns.cnki.net/kcms/detail/46.1068.S.20220104.1521.007.html.
|
|
TONG B, ZHAN J, WANG A Q, XIAO D, HE L F. Research progress of miRNA in the regulation of programmed cell death in plants. Molecular Plant Breeding, 2022, http://kns.cnki.net/kcms/detail/46.1068.S.20220104.1521.007.html. (in Chinese)
|
[31] |
蒋丽, 孔莹莹, 韩凝, 边红武, 朱睦元, 王君晖. 植物细胞程序性死亡的分类和膜通透性调控蛋白研究进展. 植物生理学报, 2012, 48(5): 419-424.
|
|
JIANG L, KONG Y Y, HAN N, BIAN H W, ZHU M Y, WANG J H. Progress in the classification of plant programmed cell death and the regulatory protein for membrane permeabilization. Plant Physiology Journal, 2012, 48(5): 419-424. (in Chinese)
|
[32] |
黄文静, 何虎翼, 邓伦武, 王爱勤, 李创珍, 韦善清, 何龙飞. 流式细胞仪检测铝胁迫诱导的花生悬浮细胞程序性死亡. 中国油料作物学报, 2014, 36(1): 51-58.
doi: 10.7505/j.issn.1007-9084.2014.01.008
|
|
HUANG W J, HE H Y, DENG L W, WANG A Q, LI C Z, WEI S Q, HE L F. Aluminum induced programed cell death of peanut suspension cultures detected by flow cytometry. Chinese Journal of Oil Crop Sciences, 2014, 36(1): 51-58. (in Chinese)
|
[33] |
李金金, 刘昂, 王平, 陈丽梅, 年洪娟. 铝胁迫下丹波黑大豆根尖细胞线粒体参与细胞凋亡的研究. 农业生物技术学报, 2014, 22(6): 712-719.
|
|
LI J J, LIU A, WANG P, CHEN L M, NIAN H J. Root tip cell mitochondria involvement in programmed cell death induced by aluminum stress of Tamba black soybean (glycinemax). Journal of Agricultural Biotechnology, 2014, 22(6): 712-719. (in Chinese)
|
[34] |
金天, 徐月美, 邝冠翎, 刘桂东. 缺硼胁迫对枳幼苗根系生长及线粒体功能的影响. 园艺学报, 2024, 51(1): 121-132.
doi: 10.16420/j.issn.0513-353x.2022-1116
|
|
JIN T, XU Y M, KUANG G L, LIU G D. Effect of boron deficiency on the root growth and mitochondrial function of trifoliate orange seedlings. Acta Horticulturae Sinica, 2024, 51(1): 121-132. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2022-1116
|
[35] |
JIANG D X, XU H, ZHANG Y F, CHEN G X. Silicon mediated redox homeostasis in the root-apex transition zone of rice plays a key role in aluminum tolerance. Plant Physiology and Biochemistry, 2023, 201: 107871.
|
[36] |
ZHU X, WANG P, BAI Z M, HERDE M, MA Y Q, LI N, LIU S, HUANG C F, CUI R X, MA H Y, et al. Calmodulin-like protein CML 24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana. New Phytologist, 2022, 233(6): 2471-2487.
|