[1] |
ZHOU S R, ZHU S S, CUI S, HOU H G, WU H Q, HAO B Y, CAI L, XU Z, LIU L L, JIANG L, WANG H Y, WAN J M. Transcriptional and post-transcriptional regulation of heading date in rice. The New Phytologist, 2021, 230(3): 943-956.
|
[2] |
XUE W Y, XING Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761-767.
|
[3] |
DOI K, IZAWA T, FUSE T, YAMANOUCHI U, KUBO T, SHIMATANI Z, YANO M, YOSHIMURA A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18(8): 926-936.
|
[4] |
HORI K, OGISO-TANAKA E, MATSUBARA K, YAMANOUCHI U, EBANA K, YANO M. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day‐length response. The Plant Journal, 2013, 76(1): 36-46.
|
[5] |
ISHIKAWA R, AOKI M, KUROTANI K, YOKOI S, SHINOMURA T, TAKANO M, SHIMAMOTO K. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Molecular Genetics and Genomics, 2011, 285(6): 461-470.
|
[6] |
KOJIMA S, TAKAHASHI Y, KOBAYASHI Y, MONNA L, SASAKI T, ARAKI T, YANO M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant & Cell Physiology, 2002, 43(10): 1096-1105.
|
[7] |
KOMIYA R, YOKOI S, SHIMAMOTO K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 2009, 136(20): 3443-3450.
|
[8] |
LI J, CHU H W, ZHANG Y H, MOU T M, WU C Y, ZHANG Q F, XU J. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS ONE, 2012, 7(3): e34231.
|
[9] |
MATSUBARA K, YAMANOUCHI U, NONOUE Y, SUGIMOTO K, WANG Z X, MINOBE Y, YANO M. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. The Plant Journal, 2011, 66(4): 603-612.
doi: 10.1111/j.1365-313X.2011.04517.x
pmid: 21284756
|
[10] |
RYU C H, LEE S, CHO L H, KIM S L, LEE Y S, CHOI S C, JEONG H J, YI J, PARK S J, HAN C D, AN G. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)‐dependent flowering in rice. Plant, Cell & Environment, 2009, 32(10): 1412-1427.
|
[11] |
TAKAHASHI Y, SHOMURA A, SASAKI T, YANO M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7922-7927.
|
[12] |
WEI H, WANG X L, XU H, WANG L. Molecular basis of heading date control in rice. aBIOTECH, 2020, 1(4): 219-232.
doi: 10.1007/s42994-020-00019-w
pmid: 36304129
|
[13] |
YAN W H, WANG P, CHEN H X, ZHOU H J, LI Q P, WANG C R, DING Z H, ZHANG Y S, YU S B, XING Y Z, ZHANG Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant, 2011, 4(2): 319-330.
|
[14] |
YANO M, KATAYOSE Y, ASHIKARI M, YAMANOUCHI U, MONNA L, FUSE T, BABA T, YAMAMOTO K, UMEHARA Y, NAGAMURA Y, SASAKI T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12(12): 2473-2484.
|
[15] |
ZHANG H, ZHU S S, LIU T Z, WANG C M, CHENG Z J, ZHANG X, CHEN L P, SHENG P K, CAI M H, LI C N, WANG J C, ZHANG Z, CHAI J T, ZHOU L, LEI C L, GUO X P, WANG J L, WANG J, JIANG L, WU C Y, WAN J M. DELAYED HEADING DATE1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice. Plant Biotechnology Journal, 2019, 17(2): 531-539.
|
[16] |
ZHANG X N, FENG Q, MIAO J S, ZHU J J, ZHOU C C, FAN D L, LU Y Q, TIAN Q L, WANG Y C, ZHAN Q L, WANG Z Q, WANG A H, ZHANG L, SHANGGUAN Y Y, LI W J, CHEN J Y, WENG Q J, HUANG T, TANG S C, SI L Z, HUANG X H, WANG Z X, HAN B. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). The Plant Cell, 2023, 35(11): 4002-4019.
|
[17] |
蒋丹, 洪广成, 陈倩, 刘石锋, 秦小健. 水稻抽穗期分子调控研究进展. 分子植物育种, 2019, 17(21): 7071-7077.
|
|
JIANG D, HONG G C, CHEN Q, LIU S F, QIN X J. Research progress in molecular regulation of heading date in rice (Oryza sativa). Molecular Plant Breeding, 2019, 17(21): 7071-7077. (in Chinese)
|
[18] |
王玉博, 王悦, 刘雄, 唐文帮. 水稻光周期调控开花的研究进展. 中国水稻科学, 2021, 35(3): 207-224.
doi: 10.16819/j.1001-7216.2021.0514
|
|
WANG Y B, WANG Y, LIU X, TANG W B. Research progress of photoperiod regulation in rice flowering. Chinese Journal of Rice Science, 2021, 35(3): 207-224. (in Chinese)
doi: 10.16819/j.1001-7216.2021.0514
|
[19] |
ANDRÉS F, GALBRAITH D W, TALÓN M, DOMINGO C. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiology, 2009, 151(2): 681-690.
doi: 10.1104/pp.109.139097
pmid: 19675157
|
[20] |
HUANG L L, TANG J C, ZHU B H, CHEN G D, CHEN L Y, BU S H, ZHU H T, LIU Z P, LI Z, MENG L J, LIU G F, WANG S K. QTL epistasis plays a role of homeostasis on heading date in rice. Scientific Reports, 2024, 14(1): 373.
|
[21] |
TSUJI H, TAOKA K I, SHIMAMOTO K. Regulation of flowering in rice: Two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology, 2011, 14(1): 45-52.
doi: 10.1016/j.pbi.2010.08.016
pmid: 20864385
|
[22] |
ZONG W B, REN D, HUANG M H, SUN K L, FENG J, L ZHAO J, XIAO D D, XIE W H, LIU S Q, ZHANG H, QIU R, TANG W J, YANG R Q, CHEN H Y, XIE X R, CHEN L T, LIU Y G, GUO J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. The New Phytologist, 2021, 229(3): 1635-1649.
|
[23] |
王诗宇, 王志兴, 隋亚云, 黄河, 宋晓波, 郭素华. 光周期调控水稻开花期的分子机制研究进展. 北方水稻, 2020, 50(3): 49-52.
|
|
WANG S Y, WANG Z X, SUI Y Y, HUANG H, SONG X B, GUO S H. Research progress of the molecular mechanism of photoperiod control rice flowering. North Rice, 2020, 50(3): 49-52. (in Chinese)
|
[24] |
|
|
MA Y M, ZHANG S H, ZHAO J L, LIU B. Function of FCS-like zinc-finger protein OsFLZ18 in regulating rice flowering time. Scientia Agricultura Sinica, 2022, 55(20): 3875-3884. doi: 10.3864/j.issn.0578-1752.2022.20.001. (in Chinese)
|
[25] |
张月雄, 颜群, 黄大辉, 梁海福, 高汉亮, 马增凤, 刘驰, 阎勇, 高利军, 秦刚, 李容柏. 利用单片段代换系鉴定水稻稻瘟病抗性座位. 西南农业学报, 2014, 27(4): 1478-1482.
|
|
ZHANG Y X, YAN Q, HUANG D H, LIANG H F, GAO H L, MA Z F, LIU C, YAN Y, GAO L J, QIN G, LI R B. Detection of resistance loci for rice blast with single-segment substitution lines in rice (Oryza sativa L.). Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1478-1482. (in Chinese)
|
[26] |
MCCOUCH S R, KOCHERT G, YU Z H, WANG Z Y, KHUSH G S, COFFMAN W R, TANKSLEY S D. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics, 1988, 76(6): 815-829.
doi: 10.1007/BF00273666
pmid: 24232389
|
[27] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.
doi: 10.1093/bioinformatics/btp324
pmid: 19451168
|
[28] |
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110
pmid: 20644199
|
[29] |
TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.
doi: 10.1111/tpj.12105
pmid: 23289725
|
[30] |
WANG K, LI M Y, HAKONARSON H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.
|
[31] |
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, GENOMES PROJECT ANALYSIS GROUP 1000. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330
pmid: 21653522
|
[32] |
WEI X J, XU J F, GUO H N, JIANG L J, CHEN S H, YU C Y, ZHOU Z L, HU P S, ZHAI H Q, WAN J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, 2010, 153(4): 1747-1758.
|
[33] |
DAI X D, DING Y N, TAN L B, FU Y C, LIU F X, ZHU Z F, SUN X Y, SUN X W, GU P, CAI H W, SUN C Q. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon). Journal of Integrative Plant Biology, 2012, 54(10): 790-799.
|
[34] |
DONG S Q, SUN D Y, HAN X K, ZHU Y, NIU F A, LIU Y, LIU S, SUN X J, REN D, HU Z J, WANG Y, YAN P W, XIN X Y, YANG J S, LUO X J. Cloning and functional analysis of LH2, a gene controlling late heading in rice. Crop Science, 2021, 61(4): 2398-2408.
|
[35] |
任民, 陈成斌, 荣廷昭, 张万霞, 盖红梅, 杨庆文. 桂东南地区普通野生稻遗传多样性研究. 植物遗传资源学报, 2005, 6(1): 31-36, 42.
|
|
REN M, CHEN C B, RONG T Z, ZHANG W X, GAI H M, YANG Q W. Genetic diversity of Oryza rufipogon giff. in southeast region of Guangxi in China. Journal of Plant Genetic Resources, 2005, 6(1): 31-36, 42. (in Chinese)
|
[36] |
杨庆文, 黄娟. 中国普通野生稻遗传多样性研究进展. 作物学报, 2013, 39(4): 580-588.
|
|
YANG Q W, HUANG J. Research progress on genetic diversity of Oryza rufipogon in China. Acta Agronomica Sinica, 2013, 39(4): 580-588. (in Chinese)
|
[37] |
LIU C H, WANG T Y, CHEN H C, MA X D, JIAO C Z, CUI D, HAN B, LI X B, JIAO A X, RUAN R C, XUE D Y, WANG Y J, HAN L Z. Genomic footprints of Kam Sweet Rice domestication indicate possible migration routes of the Dong people in China and provide resources for future rice breeding. Molecular Plant, 2023, 16(2): 415-431.
|
[38] |
SUN C Q, WANG X K, LI Z C, YOSHIMURA A, IWATA N. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theoretical and Applied Genetics, 2001, 102(1): 157-162.
|
[39] |
邓伟, 吕莹, 董阳均, 徐雨然, 杨华涛, 张锦文, 张建华, 奎丽梅, 涂建, 相罕章, 管俊娇, 董维, 谷安宇, 安华, 杨丽萍, 张笑, 李小林. 云南水稻种质资源的遗传多样性分析. 植物遗传资源学报, 2023, 24(3): 624-635.
doi: 10.13430/j.cnki.jpgr.20221014002
|
|
DENG W, LÜ Y, DONG Y J, XU Y R, YANG H T, ZHANG J W, ZHANG J H, KUI L M, TU J, XIANG H Z, GUAN J J, DONG W, GU A Y, AN H, YANG L P, ZHANG X, LI X L. The genetic diversity analysis of rice germplasm resources in Yunnan Province of China. Journal of Plant Genetic Resources, 2023, 24(3): 624-635. (in Chinese)
doi: 10.13430/j.cnki.jpgr.20221014002
|
[40] |
CHEN J B, LI X Y, CHENG C, WANG Y H, QIN M, ZHU H T, ZENG R Z, FU X L, LIU Z Q, ZHANG G Q. Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Scientific Reports, 2014, 4: 4263.
|
[41] |
LI X, ZHANG R C, CHEN G, XIE J X, XIAO Z W, CAO F B, ALI I, IQBAL A, WAHAB A, HUANG M, CHEN J N. Increasing grain weight and yield stability by increasing pre-heading non-structural carbohydrate reserves per spikelet in short-growth duration rice. The Crop Journal, 2023, 11(6): 1912-1920.
|