[1] |
KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 2005, 59(1): 1-6.
doi: 10.1007/s11103-005-2159-5
pmid: 16217597
|
[2] |
HÄNSCH R, MENDEL R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 2009, 12(3): 259-266.
doi: 10.1016/j.pbi.2009.05.006
pmid: 19524482
|
[3] |
CARRASCO-GIL S, RIOS J J, ÁLVAREZ-FERNÁNDEZ A, ABADÍA A, GARCÍA-MINA J M, ABADÍA J. Effects of individual and combined metal foliar fertilisers on iron- and manganese-deficient Solanum lycopersicum plants. Plant and Soil, 2016, 402(1/2): 27-45.
|
[4] |
WANG Y Y, YANG X E, ZHANG X C, DONG L X, ZHANG J, WEI Y Y, FENG Y, LU L L. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. Journal of Agricultural and Food Chemistry. 2014, 62(8): 1783-1791.
|
[5] |
MARRIS H, DEBOUDT K, FLAMENT P, GROBÉTY B, GIERÉ R. Fe and Mn oxidation states by TEM-EELS in fine-particle emissions from a Fe-Mn alloy making plant. Environmental Science & Technology, 2013, 47(19): 10832-10840.
|
[6] |
YAN J L, WANG P T, WANG P, YANG M, LIAN X M, TANG Z, HUANG C F, SALT D E, ZHAO F J. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant, Cell & Environment, 2016, 39(9): 1941-1954.
|
[7] |
LIEDSCHULTE V, LAPARRA H, BATTEY J N D, SCHWAAR J D, BROYE H, MARK R, KLEIN M, GOEPFERT S, BOVET L. Impairing both HMA4 homeologs is required for cadmium reduction in tobacco. Plant, Cell & Environment, 2017, 40(3): 364-377.
|
[8] |
CHANDRANGSU P, HELMANN J D. Intracellular Zn (Ⅱ) intoxication leads to dysregulation of the PerR regulon resulting in heme toxicity in Bacillus subtilis. PLoS Genetics, 2016, 12(12): e1006515.
|
[9] |
FRARY A, NESBITT T C, GRANDILLO S, KNAAP E, CONG B, LIU J, MELLER J, ELBER R, ALPERT K B, TANKSLEY S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289(5476): 85-88.
doi: 10.1126/science.289.5476.85
pmid: 10884229
|
[10] |
CONG B, LIU J P, TANKSLEY S D. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13606-13611.
|
[11] |
LIBAULT M, STACEY G. Evolution of FW2.2-like (FWL) and PLAC8 genes in eukaryotes. Plant Signaling & Behavior, 2010, 5(10): 1226-1228.
|
[12] |
SONG W Y, CHOI K S, KIM D Y, GEISLER M, PARK J, VINCENZETTI V, SCHELLENBERG M, KIM S H, LIM Y P, NOH E W, LEE Y, MARTINOIA E. Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. The Plant Cell, 2010, 22(7): 2237-2252.
|
[13] |
THIBIVILLIERS S, FARMER A, LIBAULT M. Isolation of Plant Root Nuclei for Single Cell RNA Sequencing. Current Protocols in Plant Biology, 2020, 5(4): e20120.
|
[14] |
XU J, XIONG W T, CAO B B, YAN T Z, LUO T, FAN T T, LUO M Z. Molecular characterization and functional analysis of “fruit-weight 2.2-like” gene family in rice. Planta, 2013, 238(4):643-655.
|
[15] |
熊文涛. 水稻OsFWL家族部分基因的生物学功能研究[D]. 武汉: 华中农业大学, 2018.
|
|
XIONG W T. Functional analysis of part of genes in OsFWL gene family in rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
|
[16] |
Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice. The New Phytologist, 2020, 227(2): 629-640.
|
[17] |
王玲玲. 水稻穗粒数调控基因OsFWL2的功能研究[D]. 扬州: 扬州大学, 2018.
|
|
WANG L L. Functional analysis of OsFWL2 gene involved in grain number regulation in rice[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
|
[18] |
WANG F J, WANG M, LIU Z P, SHI Y, HAN T Q, YE Y Y, GONG N, SUN J W, ZHU C. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiology and Biochemistry, 2015, 96: 261-269.
doi: 10.1016/j.plaphy.2015.08.001
pmid: 26318143
|
[19] |
WANG F J, TAN H F, HAN J H, ZHANG Y T, HE X, DING Y F, CHEN Z X, ZHU C. A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice. Environmental Sciences Europe, 2019, 31(1): 82.
|
[20] |
SONG W Y, LEE H S, JIN S R, KO D, MARTINOIA E, LEE Y, AN G, AHN S N. Rice PCR1 influences grain weight and Zn accumulation in grains. Plant, Cell & Environment, 2015, 38(11): 2327-2339.
|
[21] |
XIONG W T, WANG P, YAN T Z, CAO B B, XU J, LIU D F, LUO M Z. The rice “fruit-weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots. Planta, 2018, 247(5): 1247-1260.
|
[22] |
GAO Q S, LI G, SUN H, XU M, WANG H H, JI J H, WANG D, YUAN C Y, ZHAO X X. Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice. International Journal of Molecular Sciences, 2020, 21(3): 809.
|
[23] |
GAO Q S, LIU L, ZHOU H Y, LIU X, LI W, MIN Y, YAN Y R, JI J H, ZHANG H, ZHAO X X. Mutation in OsFWL7affects cadmium and micronutrient metal accumulation in rice. International Journal of Molecular Sciences, 2021, 22(22): 12583.
|
[24] |
陈敏. 水稻逆境相关蛋白 OsSAP5 响应高温和干旱胁迫的机理研究[D]. 杭州: 浙江大学, 2022.
|
|
CHEN M. in response to high temperature and drought stress in rice[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
|
[25] |
PITTMAN J K. Managing the manganese: Molecular mechanisms of manganese transport and homeostasis. New Phytologist, 2005, 167(3): 733-742.
doi: 10.1111/j.1469-8137.2005.01453.x
pmid: 16101910
|
[26] |
GUO M, RUPE M A, DIETER J A, ZOU J J, SPIELBAUER D, DUNCAN K E, HOWARD R J, HOU Z J, SIMMONS C R. Cell Number Regulator1 affects plant and organ size in maize: Implications for crop yield enhancement and heterosis. The Plant Cell, 2010, 22(4): 1057-1073.
doi: 10.1105/tpc.109.073676
pmid: 20400678
|
[27] |
SONG W Y, HÖRTENSTEINER S, TOMIOKA R, LEE Y, MARTINOIA E. Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes. Molecules and Cells, 2011, 31(1): 1-7.
|
[28] |
QIAO K, WANG F H, LIANG S, WANG H, HU Z L, CHAI T Y. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Scientific Reports, 2019, 9(1): 870.
doi: 10.1038/s41598-018-37352-6
pmid: 30696904
|
[29] |
QIAO K, GONG L, TIAN Y, HONG W, CHAI T. The metal-binding domain of wheat heavy metal ATPase 2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Reports, 2018, 37: 1343-1352.
|
[30] |
LIU D Y, LIU Y M, ZHANG W, CHEN X P, ZOU C Q. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients, 2017, 9(5): 465.
|
[31] |
RASHID A, RAM H, ZOU C Q, RERKASEM B, DUARTE A P, SIMUNJI S, YAZICI A, GUO S W, RIZWAN M, BAL R S, WANG Z H, MALIK S S, PHATTARAKUL N, DE FREITAS R S, LUNGU O, BARROS V L N P, CAKMAK I. Effect of zinc- biofortified seeds on grain yield of wheat, rice, and common bean grown in six countries. Journal of Plant Nutrition and Soil Science, 2019, 182(5): 791-804.
|