[1] |
LI W T, CHERN M, YIN J J, WANG J, CHEN X W. Recent advances in broad-spectrum resistance to the rice blast disease. Current Opinion in Plant Biology, 2019, 50: 114-120.
doi: S1369-5266(18)30180-8
pmid: 31163394
|
[2] |
杨德卫, 王莫, 韩利波, 唐定中, 李生平. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展. 植物学报, 2019, 54 (2): 265-276.
doi: 10.11983/CBB18194
|
|
YANG D W, WANG M, HAN L B, TANG D Z, LI S P. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi. Chinese Bulletin of Botany, 2019, 54(2): 265-276. (in Chinese)
|
[3] |
DANGL J L, HORVATH D M, STASKAWICZ B J. Pivoting the plant immune system from dissection to deployment. Science, 2013, 341(6147): 746-751.
doi: 10.1126/science.1236011
pmid: 23950531
|
[4] |
WANG W, FENG B M, ZHOU J M, TANG D Z. Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 2020, 62 (1): 2-24.
doi: 10.1111/jipb.12898
|
[5] |
YUAN M H, NGOU B P M, DING P T, XIN X F. PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62: 102030.
|
[6] |
COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 2016, 16(9): 537-552.
doi: 10.1038/nri.2016.77
pmid: 27477127
|
[7] |
TANG D Z, WANG G X, ZHOU J M. Receptor kinases in plant-pathogen interactions: More than pattern recognition. The Plant Cell, 2017, 29 (4): 618-637.
doi: 10.1105/tpc.16.00891
pmid: 28302675
|
[8] |
LIANG X X, ZHOU J M. Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology, 2018, 69: 267-299.
doi: 10.1146/annurev-arplant-042817-040540
pmid: 29719165
|
[9] |
SHI H, SHEN Q J, QI Y P, YAN H J, NIE H Z, CHEN Y F, ZHAO T, KATAGIRI F, TANG D Z. BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. The Plant Cell, 2013, 25(3): 1143-1157.
|
[10] |
YAN H J, ZHAO Y F, SHI H, LI J, WANG Y C, TANG D Z. BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis. Plant Physiology, 2018, 176(4): 2991-3002.
|
[11] |
ZHAO Y F, WU G H, SHI H, TANG D Z. RECEPTOR-LIKE KINASE 902 associates with and phosphorylates BRASSINOSTEROID- SIGNALING KINASE1 to regulate plant immunity. Molecular Plant, 2019, 12(1): 59-70.
|
[12] |
SU B D, ZHANG X, LI L, ABBAS S, YU M, CUI Y N, BALUŠKA F, HWANG I, SHAN X Y, LIN J X. Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity. Molecular Plant, 2021, 14(4): 588-603.
doi: 10.1016/j.molp.2021.01.019
pmid: 33524551
|
[13] |
SHI H, LI Q Y, LUO M Y, YAN H J, XIE B, LI X, ZHONG G T, CHEN D S, TANG D Z. BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. The Plant Cell, 2022, 34(5): 1768-1783.
|
[14] |
WANG J, SHI H, ZHOU L, PENG C F, LIU D Y, ZHOU X G, WU W G, YIN J J, QIN H, MA W W, HE M, LI W T, WANG J C, LI S G, CHEN X W. OsBSK1-2, an orthologous of AtBSK1, is involved in rice immunity. Frontiers in Plant Science, 2017, 8: 908.
doi: 10.3389/fpls.2017.00908
pmid: 28680425
|
[15] |
LI S P, XIANG X Q, DIAO Z J, XIA N, LU L, ZHANG J, CHEN Z W, TANG D Z. The OsBSK1-2-MAPK module regulates blast resistance in rice. The Crop Journal, 2024, 12(1): 110-120.
|
[16] |
NAGANO M, ISHIKAWA T, FUJIWARA M, FUKAO Y, KAWANO Y, KAWAI-YAMADA M, SHIMAMOTO K. Plasma membrane microdomains are essential for Rac1-RbohB/H-mediated immunity in rice. The Plant Cell, 2016, 28(8): 1966-1983.
doi: 10.1105/tpc.16.00201
pmid: 27465023
|
[17] |
WONG H L, PINONTOAN R, HAYASHI K, TABATA R, YAENO T, HASEGAWA K, KOJIMA C, YOSHIOKA H, IBA K, KAWASAKI T, SHIMAMOTO K. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. The Plant Cell, 2007, 19(12): 4022-4034.
|
[18] |
SHI Y, CHANG Y L, WU H T, SHALMANI A, LIU W T, LI W Q, XU J W, CHEN K M. OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice. Plant Cell Reports, 2020, 39(12): 1767-1784.
|
[19] |
LI G B, HE J X, WU J L, WANG H, ZHANG X, LIU J, HU X H, ZHU Y, SHEN S, BAI Y F, YAO Z L, LIU X X, ZHAO J H, LI D Q, LI Y, HUANG F, HUANG Y Y, ZHAO Z X, ZHANG J W, ZHOU S X, JI Y P, PU M, QIN P, LI S G, CHEN X W, WANG J, HE M, LI W T, WU X J, XU Z J, WANG W M, FAN J. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. Molecular Plant, 2022, 15(11): 1790-1806.
|
[20] |
FAN J B, BAI P F, NING Y S, WANG J Y, SHI X T, XIONG Y H, ZHANG K, HE F, ZHANG C Y, WANG R Y, MENG X Z, ZHOU J G, WANG M, SHIRSEKAR G, PARK C H, BELLIZZI M, LIU W D, JEON J S, XIA Y, SHAN L B, WANG G L. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host & Microbe, 2018, 23(4): 498-510.
|
[21] |
张悦婧, 李颖, 王娟娟, 庞海龙, 贾凌云, 冯汉青. 不同转化条件对3种农杆菌GFP基因在本氏烟草中瞬时表达的影响. 植物研究, 2022, 42(1): 121-129.
doi: 10.7525/j.issn.1673-5102.2022.01.013
|
|
ZHANG Y J, LI Y, WANG J J, PANG H L, JIA L Y, FENG H Q. Effects of three kinds of Agrobacterium and different transformation conditions on the transient expression of GFP in Nicotiana benthamiana. Bulletin of Botanical Research, 2022, 42(1): 121-129. (in Chinese)
|
[22] |
LIANG J H, LU L, ZHOU H L, FANG J B, ZHAO Y F, HOU H N, CHEN L Z, CAO C, YANG D W, DIAO Z J, TANG D Z, LI S P. Receptor-like kinases OsRLK902-1 and OsRLK902-2 form immune complexes with OsRLCK185 to regulate rice blast resistance. Journal of Experimental Botany, 2024, 75(5): 1565-1579.
|
[23] |
杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究. 作物学报, 2022, 48(5): 1119-1128.
doi: 10.3724/SP.J.1006.2022.12022
|
|
YANG D W, WANG X, ZHENG X X, XIANG X Q, CUI H T, LI S P, TANG D Z. Functional studies of rice blast resistance related gene OsSAMS1. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. (in Chinese)
|
[24] |
LU L, DIAO Z J, YANG D W, WANG X, ZHENG X X, XIANG X Q, XIAO Y P, CHEN Z W, WANG W, WU Y K, TANG D Z, LI S P. The 14-3-3 protein GF14c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. Plant, Cell & Environment, 2022, 45(4): 1065-1081.
|
[25] |
NIU Y Q, HUANG X G, HE Z X, ZHANG Q Q, MENG H, SHI H, FENG B M, ZHOU Y C, ZHANG J F, LU G D, WANG Z H, ZHANG W L, TANG D Z, WANG M. Phosphorylation of OsTGA5 by casein kinase II compromises its suppression of defense-related gene transcription in rice. The Plant Cell, 2022, 34(9): 3425-3442.
doi: 10.1093/plcell/koac164
pmid: 35642941
|
[26] |
THORDAL-CHRISTENSEN H, ZHANG Z G, WEI Y D, COLLINGE D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 1997, 11(6): 1187-1194.
|
[27] |
LIU Q N, NING Y S, ZHANG Y X, YU N, ZHAO C D, ZHAN X D, WU W X, CHEN D B, WEI X J, WANG G L, CHENG S H, CAO L Y. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice. The Plant Cell, 2017, 29(2): 345-359.
doi: 10.1105/tpc.16.00650
pmid: 28100706
|
[28] |
SINGH A K, KUMAR R, PAREEK A, SOPORY S K, SINGLA-PAREEK S L. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Molecular Biotechnology, 2012, 52(3): 205-216.
pmid: 22302312
|
[29] |
ZHAI K R, LIANG D, LI H L, JIAO F Y, YAN B X, LIU J, LEI Z Y, HUANG L, GONG X Y, WANG X, MIAO J S, WANG Y C, LIU J Y, ZHANG L, WANG E T, DENG Y W, WEN C K, GUO H W, HAN B, HE Z H. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature, 2022, 601(7892): 245-251.
|
[30] |
YOO K S, OK S H, JEONG B C, JUNG K W, CUI M H, HYOUNG S, LEE M R, SONG H K, SHIN J S. Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. The Plant Cell, 2011, 23(10): 3577-3594.
|
[31] |
JUNG K W, KIM Y Y, YOO K S, OK S H, CUI M H, JEONG B C, YOO S D, JEUNG J U, SHIN J S. A cystathionine-β-synthase domain-containing protein, CBSX2, regulates endothecial secondary cell wall thickening in anther development. Plant & Cell Physiology, 2013, 54(2): 195-208.
|
[32] |
SHIN J S, SO W M, KIM S Y, NOH M, HYOUNG S, YOO K S, SHIN J S. CBSX3-Trxo-2 regulates ROS generation of mitochondrial complex II (succinate dehydrogenase) in Arabidopsis. Plant Science, 2020, 294: 110458.
|
[33] |
WANG C, WANG G, ZHANG C, ZHU P K, DAI H L, YU N, HE Z H, XU L, WANG E T. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Molecular Plant, 2017, 10(4): 619-633.
doi: S1674-2052(17)30007-2
pmid: 28111288
|
[34] |
BERTONI G. CBS domain proteins regulate redox homeostasis. The Plant Cell, 2011, 23(10): 3562.
doi: 10.1105/tpc.111.231011
pmid: 22021415
|
[35] |
KUMAR R, SUBBA A, KAUR C, ARIYADASA T U, SHARAN A, PAREEK A, SOPORY S K, SINGLA-PAREEK S L. OsCBSCBSPB4 is a two cystathionine-β-synthase domain-containing protein from rice that functions in abiotic stress tolerance. Current Genomics, 2018, 19(1): 50-59.
|
[36] |
ZAFAR S A, PATIL S B, UZAIR M, FANG J J, ZHAO J F, GUO T T, YUAN S J, UZAIR M, LUO Q, SHI J X, SCHREIBER L, LI X Y. Degenerated panicle and partial sterility 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. The New Phytologist, 2020, 225(1): 356-375.
|
[37] |
KE X L, XIAO H, PENG Y Q, WANG J, LV Q, WANG X L. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. Science, 2022, 378(6623): 971-977.
doi: 10.1126/science.abq8591
pmid: 36454840
|
[38] |
MOU S L, SHI L P, LIN W, LIU Y Y, SHEN L, GUAN D Y, HE S L. Over-expression of rice CBS domain containing protein, OsCBSX3, confers rice resistance to Magnaporthe oryzae inoculation. International Journal of Molecular Sciences, 2015, 16(7): 15903-15917.
|
[39] |
KUSHWAHA H R, SINGH A K, SOPORY S K, SINGLA-PAREEK S L, PAREEK A. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics, 2009, 10: 200.
|