[1] |
辛朗, 马嘉莹, 刘冉, 唐茂淞, 蒋敏, 王兴鹏. 咸淡水交替灌溉对南疆设施番茄酶活性及产量品质的影响. 节水灌溉, 2023(1): 33-39.
doi: 10.12396/jsgg.2022168
|
|
XIN L, MA J Y, LIU R, TANG M S, JIANG M, WANG X P. Effect of alternate brackish and freshwater irrigation on enzyme activity and yield quality of tomatoes in southern Xinjiang facilities. Water Saving Irrigation, 2023(1): 33-39. (in Chinese)
doi: 10.12396/jsgg.2022168
|
[2] |
|
|
YAO Y, XU Y Q, WANG G, SUN W. Salt-alkalinze stress induced rhizosphere effects and photosynthetic physiological response of two ecotypes of Leymus chinensis in Songnen meadow steppe. Scientia Agricultura Sinica, 2020, 53(13): 2584-2594. doi: 10.3864/j.issn.0578-1752.2020.13.007. (in Chinese)
|
[3] |
HUANG R D. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture, 2018, 17(4): 739-746.
|
[4] |
HU Y X, LI X W, JIN M G, WANG R, CHEN J Y, GUO S L. Reduced co-occurrence and ion-specific preferences of soil microbial hub species after ten years of irrigation with brackish water. Soil and Tillage Research, 2020, 199: 104599.
|
[5] |
CHEN W L, JIN M G, FERRÉ T P A, LIU Y F, XIAN Y, SHAN T R, PING X. Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crops Research, 2018, 215: 207-221.
|
[6] |
郭丽丽, 郝立华, 贾慧慧, 李菲, 张茜茜, 曹旭, 徐明, 郑云普. NaCl胁迫对两种番茄气孔特征、气体交换参数和生物量的影响. 应用生态学报, 2018, 29(12): 3949-3958.
doi: 10.13287/j.1001-9332.201812.022
|
|
GUO L L, HAO L H, JIA H H, LI F, ZHANG Q Q, CAO X, XU M, ZHENG Y P. Effects of NaCl stress on stomatal traits, leaf gas exchange parameters, and biomass of two tomato cultivars. Chinese Journal of Applied Ecology, 2018, 29(12): 3949-3958. (in Chinese)
doi: 10.13287/j.1001-9332.201812.022
|
[7] |
JIA X M, WANG H, SVETLA S, ZHU Y F, HU Y, CHENG L, ZHAO T, WANG Y X. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Scientia Horticulturae, 2019, 245: 154-162.
|
[8] |
ZHANG Y Q, KAISER E, LI T, MARCELIS L F M. NaCl affects photosynthetic and stomatal dynamics by osmotic effects and reduces photosynthetic capacity by ionic effects in tomato. Journal of Experimental Botany, 2022, 73(11): 3637-3650.
|
[9] |
PAZ R C, REINOSO H, ESPASANDIN F D, GONZÁLEZ ANTIVILO F A, SANSBERRO P A, ROCCO R A, RUIZ O A, MENÉNDEZ A B. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biology, 2014, 16(6): 1042-1049.
|
[10] |
PAZ R C, ROCCO R A, REINOSO H, MENÉNDEZ A B, PIECKENSTAIN F L, RUIZ O A. Comparative study of alkaline, saline, and mixed saline-alkaline stresses with regard to their effects on growth, nutrient accumulation, and root morphology of Lotus tenuis. Journal of Plant Growth Regulation, 2012, 31(3): 448-459.
|
[11] |
LIANG B B, WANG W J, FAN X X, KURAKOV A V, LIU Y F, SONG F Q, CHANG W. Arbuscular mycorrhizal fungi can ameliorate salt stress in Elaeagnus angustifolia by improving leaf photosynthetic function and ultrastructure. Plant Biology, 2021, 23 (Suppl.1): 232-241.
|
[12] |
CHEN Y Y, LU P Z, SUN P, WEI L, CHEN G L, WU D. Interactive salt-alkali stress and exogenous Ca2+ effects on growth and osmotic adjustment of Lolium multiflorum in a coastal estuary. Flora, 2017, 229: 92-99.
|
[13] |
WANG X, WANG J G, LIU H L, ZOU D, ZHAO H W. Influence of natural saline-alkali stress on chlorophyll content and chloroplast ultrastructure of two contrasting rice (Oryza sativa L. japonica) cultivars. Australian Journal of Crop Science, 2013, 7: 289-292.
|
[14] |
|
|
MENG X M, JI Y H, SUN W W, WU Z H, CHU Z S, LIU M C. Response of chloroplast ultrastructure and photosynthetic physiology of two tomato varieties to low light stress. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028. doi: 10.3864/j.issn.0578-1752.2021.05.013. (in Chinese)
|
[15] |
FU J, WANG Y F, LIU Z H, LI Z T, YANG K J. Trichoderma asperellum alleviates the effects of saline-alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism. Plant Growth Regulation, 2018, 85(3): 363-374.
|
[16] |
CUI J, JIANG N, ZHOU X X, HOU X X, YANG G L, MENG J, LUAN Y S. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta, 2018, 248(6): 1487-1503.
|
[17] |
OI T, CLODE P L, TANIGUCHI M, COLMER T D, KOTULA L. Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C4 monocotyledonous halophyte. Plant, Cell & Environment, 2022, 45(5): 1490-1506.
|
[18] |
MUNEER S, JEONG B R. Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regulation, 2015, 77(2): 133-146.
|
[19] |
HU H R, LIU H, DU G H, FEI Y, DENG G, YANG Y, LIU F H. Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Industrial Crops and Products, 2019, 129: 624-630.
|
[20] |
YANG J Y, ZHENG W, TIAN Y, WU Y, ZHOU D W. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284.
|
[21] |
GONG B, WANG X F, WEI M, YANG F J, LI Y, SHI Q H. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 124(2): 377-391.
|
[22] |
WANG X J, ZHANG J Y, GAO J, SHAHID S, XIA X H, GENG Z, TANG L. The new concept of water resources management in China: ensuring water security in changing environment. Environment, Development and Sustainability, 2018, 20(2): 897-909.
|
[23] |
MA J Y, LI Z Y, JIANG W G, LIU J F. Effects of different salinity levels in drip irrigation with brackish water on soil water-salt transport and yield of protected tomato (Solanum lycopersicum). Agronomy, 2023, 13(9): 2442.
|
[24] |
CASSON S, GRAY J E. Influence of environmental factors on stomatal development. The New Phytologist, 2008, 178(1): 9-23.
|
[25] |
张浩, 郭丽丽, 叶嘉, 张雷, 王清涛, 李菲, 张茜茜, 曹旭, 徐明, 郝立华, 郑云普. 樱桃番茄叶片气孔特征和气体交换过程对NaCl胁迫的响应. 农业工程学报, 2018, 34(5): 107-113.
|
|
ZHANG H, GUO L L, YE J, ZHANG L, WANG Q T, LI F, ZHANG Q Q, CAO X, XU M, HAO L H, ZHENG Y P. Responses of leaf stomatal traits and gas exchange process of cherry tomato to NaCl salinity stress. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 107-113. (in Chinese)
|
[26] |
ABBRUZZESE G, BERITOGNOLO I, MULEO R, PIAZZAI M, SABATTI M, SCARASCIA MUGNOZZA G, KUZMINSKY E. Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany, 2009, 66(3): 381-388.
|
[27] |
AMJAD M, AKHTAR J, ANWAR-UL-HAQ M, YANG A Z, AKHTAR S S, JACOBSEN S E. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Scientia Horticulturae, 2014, 172: 109-116.
|
[28] |
QI X Y, TORII K U. Hormonal and environmental signals guiding stomatal development. BMC Biology, 2018, 16(1): 21.
doi: 10.1186/s12915-018-0488-5
pmid: 29463247
|
[29] |
KUMAR M, SARANGI A, SINGH D K, SUDHISHRI S, RAO A R. Wheat production functions under irrigated saline environment and foliar potassium fertigation. Current Science, 2020, 118(12): 1939.
|
[30] |
CAINE R S, HARRISON E L, SLOAN J, FLIS P M, FISCHER S, KHAN M S, NGUYEN P T, NGUYEN L T, GRAY J E, CROFT H. The influences of stomatal size and density on rice abiotic stress resilience. The New Phytologist, 2023, 237(6): 2180-2195.
|
[31] |
HAN C, LIU Q, YANG Y. Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regulation, 2009, 58(2): 153-162.
|
[32] |
ZHANG Y Q, KAISER E, ZHANG Y T, YANG Q C, LI T. Short-term salt stress strongly affects dynamic photosynthesis, but not steady- state photosynthesis, in tomato (Solanum lycopersicum). Environmental and Experimental Botany, 2018, 149: 109-119.
|
[33] |
TAVAKKOLI E, FATEHI F, COVENTRY S, RENGASAMY P, MCDONALD G K. Additive effects of Na+ and Cl- ions on barley growth under salinity stress. Journal of Experimental Botany, 2011, 62(6): 2189-2203.
|
[34] |
FENG N J, YU M L, LI Y, JIN D, ZHENG D F. Prohexadione- calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicology and Environmental Safety, 2021, 220: 112369.
|
[35] |
LI W J, GAO Y M, TIAN Y Q, LI J S. Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation. Agricultural Water Management, 2022, 264: 107488.
|
[36] |
ZHANG P F, SENGE M, DAI Y Y. Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Communications in Soil Science and Plant Analysis, 2017, 48(6): 624-634.
|
[37] |
GAO H J, YANG H Y, BAI J P, LIANG X Y, LOU Y, ZHANG J L, WANG D, ZHANG J L, NIU S Q, CHEN Y L. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Frontiers in Plant Science, 2015, 5: 787.
|
[38] |
LICHTENSTEIN G, CONTE M, ASIS R, CARRARI F. Chloroplast and Mitochondrial Genomes of Tomato. Springer Berlin Heidelberg, 2016: 2199-4781.
|
[39] |
LI J S, GAO Y M, ZHANG X Y, TIAN P, LI J, TIAN Y Q. Comprehensive comparison of different saline water irrigation strategies for tomato production: soil properties, plant growth, fruit yield and fruit quality. Agricultural Water Management, 2019, 213: 521-533.
|