[1] |
FREEMAN K W, RAUN W R, JOHNSON G V, MULLEN R W, STONE M L, SOLIE J B. Late-season prediction of wheat grain yield and grain protein. Communications in Soil Science and Plant Analysis, 2003, 34(13/14): 1837-1852.
doi: 10.1081/CSS-120023219
|
[2] |
BABAR M A, REYNOLDS M P, VAN GINKEL M, KLATT A R, RAUN W R, STONE M L. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Science, 2006, 46(2): 578-588.
doi: 10.2135/cropsci2005.0059
|
[3] |
BABAR M A, REYNOLDS M P, VAN GINKEL M, KLATT A R, RAUN W R, STONE M L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Science, 2006, 46(3): 1046-1057.
doi: 10.2135/cropsci2005.0211
|
[4] |
HAZRATKULOVA S, SHARMA R C, ALIKULOV S, ISLOMOV S, YULDASHEV T, ZIYAEV Z, KHALIKULOV Z, ZIYADULLAEV Z, TUROK J. Analysis of genotypic variation for normalized difference vegetation index and its relationship with grain yield in winter wheat under terminal heat stress. Plant Breeding, 2012, 131(6): 716-721.
doi: 10.1111/pbr.2012.131.issue-6
|
[5] |
XIAO Y G, QIAN Z G, WU K, LIU J D, XIA X C, JI W Q, HE Z H. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Science, 2012, 52: 44-56.
doi: 10.2135/cropsci2011.05.0246
|
[6] |
GAO F M, MA D Y, YIN G H, RASHEED A, DONG Y, XIAO Y G, XIA X C, WU X X, HE Z H.Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern yellow and Huai valley since 1950. Crop Science, 2017, 57(2): 760-773.
doi: 10.2135/cropsci2016.05.0362
|
[7] |
HASSAN M A, YANG M J, RASHEED A, YANG G J, REYNOLDS M, XIA X C, XIAO Y G, HE Z H. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, 2019, 282: 95-103.
doi: S0168-9452(17)31020-8
pmid: 31003615
|
[8] |
李龙, 彭智, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦高密度遗传图谱构建及抗旱相关生理性状的遗传解析. 植物遗传资源学报, 2018, 19(3): 531-538.
doi: 10.13430/j.cnki.jpgr.2018.03.019
|
|
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Genetic map construction and genetic dissection of drought- tolerant related physiological traits in wheat. Journal of Plant Genetic Resources, 2018, 19(3): 531-538. (in Chinese)
|
[9] |
AVENSON T J, CRUZ J A, KANAZAWA A, KRAMER D M.Regulating the proton budget of higher plant photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27): 9709-9713.
|
[10] |
EL-FEKI W M, BYRNE P, REID S, HALEY S. Mapping quantitative trait loci for bread making quality and agronomic traits in winter wheat under different soil moisture levels[D]. Fort Collins: Colorado State University, 2010.
|
[11] |
GAO F M, WEN W E, LIU J D, RASHEED A, YIN G H, XIA X C, WU X X, HE Z H. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science, 2015, 6: 1099.
doi: 10.3389/fpls.2015.01099
pmid: 26734019
|
[12] |
SHI S K, AZAM F I, LI H H, CHANG X P, LI B Y, JING R L. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica, 2017, 213(11): 246.
doi: 10.1007/s10681-017-2002-5
|
[13] |
ZHANG K P, FANG Z J, LIANG Y, TIAN J C. Genetic dissection of chlorophyll content at different growth stages in common wheat. Journal of Genetics, 2009, 88(2): 183-189.
doi: 10.1007/s12041-009-0026-x
pmid: 19700856
|
[14] |
GENC Y, OLDACH K, VERBYLA A P, LOTT G, HASSAN M, TESTER M, WALLWORK H, MCDONALD G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theoretical and Applied Genetics, 2010, 121(5): 877-894.
doi: 10.1007/s00122-010-1357-y
pmid: 20490443
|
[15] |
KUMAR S, SEHGAL S K, KUMAR U, VARA PRASAD P V, JOSHI A K, GILL B S. Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica, 2012, 186(1): 265-276.
doi: 10.1007/s10681-012-0675-3
|
[16] |
JIA H Y, WAN H S, YANG S H, ZHANG Z Z, KONG Z X, XUE S L, ZHANG L X, MA Z Q. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theoretical and Applied Genetics, 2013, 126(8): 2123-2139.
doi: 10.1007/s00122-013-2123-8
|
[17] |
TALUKDER S K, ALI BABAR M, VIJAYALAKSHMI K, POLAND J, PRASAD P V V, BOWDEN R, FRITZ A. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genetics, 2014, 15(1): 97.
doi: 10.1186/s12863-014-0097-4
|
[18] |
XU Y F, LI S S, LI L H, MA F F, FU X Y, SHI Z L, XU H X, MA P T, AN D G. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Molecular Breeding, 2017, 37(3): 34.
doi: 10.1007/s11032-016-0583-7
|
[19] |
BHUSAL N, SHARMA P, SAREEN S, SARIAL A K. Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biologia Plantarum, 2018, 62(4): 721-731.
doi: 10.1007/s10535-018-0811-6
|
[20] |
HASSAN F S C, SOLOUKI M, ALI FAKHERI B, NEZHAD N M, MASOUDI B. Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2018, 24(6): 1231-1243.
doi: 10.1007/s12298-018-0590-8
|
[21] |
LIU Y X, WANG R, HU Y G, CHEN J L. Genome-wide linkage mapping of quantitative trait loci for late-season physiological and agronomic traits in spring wheat under irrigated conditions. Agronomy, 2018, 8(5): 60.
doi: 10.3390/agronomy8050060
|
[22] |
杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证. 作物学报, 2023, 49(3): 744-754.
doi: 10.3724/SP.J.1006.2023.21018
|
|
YANG B, QIAO L, ZHAO J J, WU B B, WEN H W, ZHANG S W, ZHENG X W, ZHENG J. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.). Acta Agronomica Sinica, 2023, 49(3): 744-754. (in Chinese)
doi: 10.3724/SP.J.1006.2023.21018
|
[23] |
LI F J, WEN W E, HE Z H, LIU J D, JIN H, CAO S H, GENG H W, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genome-wide linkage mapping of yield related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 2018, 131(19): 1903-1924.
doi: 10.1007/s00122-018-3122-6
|
[24] |
LI F J, WEN W E, LIU J D, ZHAI S N, CAO X Y, LIU C, CHENG D G, GUO J, ZI Y, HAN R, WANG X L, LIU A F, SONG J M, LIU J J, LI H S, XIA X C. Genome-wide linkage mapping for canopy activity related traits using three RIL populations in bread wheat. Euphytica, 2021, 217(4): 1-16.
doi: 10.1007/s10681-020-02732-5
|
[25] |
LI F J, WEN W E, LIU J D, ZHANG Y, CAO S H, HE Z H, RASHEED A, JIN H, ZHANG C, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019, 19(1): 168.
doi: 10.1186/s12870-019-1781-3
pmid: 31035920
|
[26] |
LI H H, YE G Y, WANG J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175(1): 361-374.
doi: 10.1534/genetics.106.066811
pmid: 17110476
|
[27] |
NYQUIST W E, BAKER R J. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences, 1991, 10(3): 235-322.
doi: 10.1080/07352689109382313
|
[28] |
HOLLAND J, NYQUIST W, CERVANTES-MARTÍNEZ C T. Estimating and interpreting heritability for plant breeding: An update. Plant Breeding Reviews, 2010, 22: 9-112.
|
[29] |
INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345(6194): 1251788.
doi: 10.1126/science.1251788
|
[30] |
PRITCHARD J K, STEPHENS M, ROSENBERG N A, DONNELLY P. Association mapping in structured populations. The American Journal of Human Genetics, 2000, 67(1): 170-181.
doi: 10.1086/302959
|
[31] |
BELLUNDAGI A, SINGH G P, PRABHU K V, ARORA A, JAIN N, RAMYA P, SINGH A M, SINGH P K, AHLAWAT A. Early ground cover and other physiological traits as efficient selection criteria for grain yield under moisture deficit stress conditions in wheat (Triticum aestivum L.). Indian Journal of Plant Physiology, 2013, 18(3): 277-281.
doi: 10.1007/s40502-013-0047-6
|
[32] |
SUN C W, DONG Z D, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6): 1354-1360.
doi: 10.1111/pbi.v18.6
|