中国农业科学 ›› 2024, Vol. 57 ›› Issue (18): 3626-3641.doi: 10.3864/j.issn.0578-1752.2024.18.009

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

轮耕促进豫北潮土区小麦根系生长和产量增加

李连燚(), 王世纪, 姜桂英(), 李洋, 杨锦, 朱宣霖, 朱长伟, 王仁卓, 刘芳, 介晓磊, 刘世亮()   

  1. 农业农村部黄淮海平原耕地质量保育重点实验室/河南农业大学资源与环境学院,郑州 450046
  • 收稿日期:2023-11-11 接受日期:2023-12-19 出版日期:2024-09-16 发布日期:2024-09-29
  • 通信作者:
    姜桂英,E-mail:
    刘世亮,E-mail:
  • 联系方式: 李连燚,E-mail:910405024@qq.com。
  • 基金资助:
    国家重点研发计划重点专项项目(2021YFD1700904-2); 河南省高等学校重点科研项目(23A210014); 河南省重点研发与推广专项(科技攻关)(232102111029)

Rotation Tillage Mode Improves Wheat Root and Yield in Fluvo- Aquic Soil in Norther Henan Province

LI LianYi(), WANG ShiJi, JIANG GuiYing(), LI Yang, YANG Jin, ZHU XuanLin, ZHU ChangWei, WANG RenZhuo, LIU Fang, JIE XiaoLei, LIU ShiLiang()   

  1. Key Laboratory of Arable Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs/Collage of Resources and Environment, Henan Agricultural University, Zhengzhou 450046
  • Received:2023-11-11 Accepted:2023-12-19 Published:2024-09-16 Online:2024-09-29

摘要:

【目的】基于耕作定位试验,探索适宜豫北潮土地区的耕作模式。【方法】试验基于始于2016年的耕作定位试验,试验3年一个轮耕周期,选择5个典型处理:(1)连续旋耕(RT-RT-RT);(2)深耕-旋耕-旋耕(DT-RT-RT);(3)深耕-旋耕-浅旋耕(DT-RT-SRT);(4)深耕-条旋耕-浅旋耕(DT-SRT-SRT);(5)深耕-浅旋耕-旋耕(DT-SRT-RT),于2021年测定并分析不同轮耕模式下小麦各生育时期根系性状、光合特性、小麦养分含量、产量,以及土壤孔隙性、土壤团聚体分布。【结果】相较于RT-RT-RT,其他轮耕模式均促进了小麦根系生长,其中以DT-SRT-RT处理的效果最为显著。在拔节期各根系性状增幅最高,其中总根长(RL)提高了80.8%,根表面积(SA)提高了54.1%,根体积(RV)增大了51.5%,根直径(RD)增大了21.9%。随着生育时期推进,各根系性状增幅逐渐下降,其中RL增幅为39.0%—28.8%,SA为21.7%—10.8%,RV为12.4%—17.8%,RD为17.5%—24.5%。与RT-RT-RT处理相比,轮耕处理的小麦光合特性均有所改善,净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)以DT-SRT-RT 处理较为明显,在拔节期涨幅分别为25.7%、41.5%和20.5%;在开花期分别提高了55.4%、21.7%和17.4%,但在灌浆期只有Pn和Gs分别提高了9.7%和13.6%,而Tr则降低了6.7%。与RT-RT-RT处理相比,不同轮耕处理不同程度上提高小麦各器官内全量养分含量,其中DT-SRT-RT处理叶、茎和根中氮含量分别提高了66.2%,80.1%和61.1%;叶和茎中的磷含量提高了31.2%和38.4%;根系钾含量提高达50.0%。相较于RT-RT-RT,DT-SRT-RT处理显著提高了20—30 cm土层土壤孔隙度,最高提高了27.1%;轮耕处理显著降低了0—30 cm土壤容重。轮耕处理有助于提高>0.25 mm土壤大团聚体的占比,其中DT-SRT-SRT处理显著提高了0—20 cm土层>0.25 mm大团聚体的占比;但轮耕处理降低了<0.053 mm黏粉粒的占比。此外,不同轮耕模式的小麦根冠比、穗数、穗粒数、千粒重和产量均高于RT-RT-RT处理,其中DT-SRT-RT处理根冠比增加了55.6%,穗数提高了45.3%,产量提高了20.7%。由相关性分析可得知,根长、净光合速率、气孔导度和产量均呈正相关关系。【结论】在豫北潮土小麦玉米轮作区,轮耕模式改善了土壤孔隙性及小麦根系构型,提高了小麦光合速率、植株全量养分含量和产量,其中以深耕-浅旋耕-旋耕效果最佳。

关键词: 小麦, 轮耕, 根系, 光合作用, 产量, 潮土

Abstract:

【Objective】 This study aimed to explore the optimum tillage mode in northern Henan province based on the long-term experiment. 【Method】 This study was based on the long-term tillage experiment started from 2016, which included different combination of three tillage practices, rotary tillage, shallow rotary tillage, and deep tillage before winter wheat sowed. The different combinations were 3-year cycle. Five typical treatments were selected: (1) continuous rotary tillage (RT-RT-RT); (2) Deep tillage-rotary tillage-rotary tillage (DT-RT-RT); (3) Deep tillage-rotary tillage-shallow rotary tillage (DT-RT-SRT); (4) Deep tillage- shallow rotary tillage- shallow rotary tillage (DT-SRT-SRT); (5) Deep tillage- shallow rotary tillage-rotary tillage (DT-SRT-RT). During the wheat season in 2021, root growth indexes, wheat photosynthetic characteristics, total nutrients of all organs at maturity, soil porosity, soil bulk density, aggregate distribution and wheat yield were measured and analyzed. 【Result】 Compared with RT-RT-RT, the wheat root indexes were improved under the treatments with rotation tillage, therein, DT-SRT-RT displayed the outstanding one. The highest increment of root indexes was at jointing stage. The total root length (RL), surface area (SA), volume (RV), and diameter (RD) were increased by 80.8%, 54.1%, 51.5%, and 21.9%, respectively. The increment was decreased with wheat growth, with the relevant value as 39.0%-28.8% (RL), 21.7%-10.8% (SA), 12.4%-17.8% (RV), and 17.5%-24.5% (RD), respectively. Rotational tillage treatments promoted the wheat photosynthetic characteristics, similar as root indexes, while DT-SRT-RT was demonstrated the better effect among all the treatments. Compared with RT-RT-RT, under DT-SRT-RT, the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) was increased by 25.7%, 41.5%, and 20.5% respectively, at the jointing stage, which was increased by 55.4%, 21.7%, and 17.4%, respectively, at the flowering stage. At the filling stage, the Pn and Gs were increased by 9.7% and 13.6%, respectively, while the Tr was decreased by 6.7%. The nutrient in wheat organ was promoted under the treatments with rotation tillage compared to RT-RT-RT. Therein, under DT-SRT-RT, the TN in leaves, stems, and roots was increased by 66.2%, 80.1% and 61.1%, respectively; the TP in leaves and stems increased by 31.2% and 38.4%; the TK in roots was increased by 50.0%. Compared with RT-RT-RT, the soil porosity was improved in the 20-30 cm soil layer with the increment of 27.1%. The treatments with rotation tillage decreased the soil bulk density in the 0-30 cm soil layer. Meanwhile, the aggregate size with >0.25 mm was increased under the treatments with rotation tillage, especially, it was significant increases under DT-SRT-SRT in the 0-20 cm soil layer. However, the silt and clay proportion were decreased under the treatments with rotation tillage. Additionally, the root-shoot (R/S) ratio, numbers of ears, grain number per spike, 1000-grain weight and yield under the treatments with rotation tillage were higher than those under RT-RT-RT. The R/S ratio increased by 55.6%, numbers of ears increased by 45.3%, and yield increased by 20.7% under DT-SRT-RT. The correlation analysis showed that the yield positively correlated with root length and Stomatal conductance and net photosynthetic rate. 【Conclusion】 In conclusion, the rotation tillage mode improved the soil porosity and root architecture, raised the photosynthetic rate, enriched the TN, TP, and TK in wheat organs, and increased wheat yield. Therein, the DT-SRT-RT demonstrated the better effect.

Key words: wheat, rotation tillage, root, photosynthetic characteristics, yield, fluvo-aquic soil