[1] |
ZHAO N, WANG W, GROVER C E, JIANG K, PAN Z, GUO B, ZHU J, SU Y, WANG M, NIE H, et al. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. Plant Biotechnology Journal, 2022, 20(4): 691-710.
|
[2] |
朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究. 生物技术通报, 2023, 39(1): 243-252.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0419
|
|
ZHU J C, YANG Y, LOU H, ZHANG W. Regulation of Fusarium wilt resistance in cotton by exogenous melatonin. Biotechnology Bulletin, 2023, 39(1): 243-252. (in Chinese)
|
[3] |
娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响. 生物技术通报, 2023, 39(9): 156-167.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0284
|
|
LOU H, ZHU J C, YANG Y, ZHANG W. Effects of root exudates in resistant and susceptible varieties of cotton on the growths and gene expressions of Fusarium oxysporum. Biotechnology Bulletin, 2023, 39(9): 156-167. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0284
|
[4] |
GÁLVEZ L, BRIZUELA A M, GARCÉS I, CAINARCA J S, PALMERO D. First report of Fusarium oxysporum f. sp. lactucae race 4 causing lettuce wilt in Spain. Plant Disease, 2023, 107(8): 2549.
|
[5] |
SHEN X M, LIU J, METOK K, YANG Y Z, LIU J F, LIU X L, LI Q, LI P L. First report of rootstalk rot of Hibiscus mutabilis caused by Fusarium oxysporum in China. Plant Disease, 2023, 107(7): 2223.
|
[6] |
ZHU L J, YU H T, DAI X M, YU M L, YU Z F. Effect of methyl jasmonate on the quality and antioxidant capacity by modulating ascorbate-glutathione cycle in peach fruit. Scientia Horticulturae, 2022, 303: 111216.
|
[7] |
ITO T, OHKAMA-OHTSU N. Degradation of glutathione and glutathione conjugates in plants. Journal of Experimental Botany, 2023, 74(11): 3313-3327.
|
[8] |
BACHHAWAT A K, YADAV S. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life, 2018, 70(7): 585-592.
|
[9] |
MASI A, TRENTIN A R, AGRAWAL G K, RAKWAL R. Gamma- glutamyl cycle in plants: A bridge connecting the environment to the plant cell. Frontiers in Plant Science, 2015, 6: 252.
|
[10] |
LI X Y, DING Y, LIU Y P, MA Y Y, SONG J Q, WANG Q, YANG Y L. Five Chinese patients with 5-oxoprolinuria due to glutathione synthetase and 5-oxoprolinase deficiencies. Brain and Development, 2015, 37(10): 952-959.
|
[11] |
OHKAMA-OHTSU N, OIKAWA A, ZHAO P, XIANG C, SAITO K, OLIVER D J. A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiology, 2008, 148(3): 1603-1613.
|
[12] |
NOCTOR G, MHAMDI A, CHAOUCH S, HAN Y, NEUKERMANS J, MARQUEZ-GARCIA B, QUEVAL G, FOYER C H. Glutathione in plants: An integrated overview. Plant, Cell and Environment, 2012, 35(2): 454-484.
|
[13] |
PAULOSE B, CHHIKARA S, COOMEY J, JUNG H I, VATAMANIUK O, DHANKHER O P. A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. The Plant Cell, 2013, 25(11): 4580-4595.
|
[14] |
DENG Y Z, QU Z W, HE Y L, NAQVI N I. Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae. Autophagy, 2012, 8(7): 1058-1070.
|
[15] |
YANG P, CHEN Y Y, WU H M, FANG W Q, LIANG Q F, ZHENG Y L, OLSSON S, ZHANG D M, ZHOU J, WANG Z H, ZHENG W H. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Current Genetics, 2018, 64(1): 285-301.
|
[16] |
|
|
SUN Q, HE F, SHAO S N, LIU Z, HUANG J F. Cloning and functional analysis of VdHP1 in Verticillium dahliae from cotton. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884. doi: 10.3864/j.issn.0578-1752.2020.14.011. (in Chinese)
|
[17] |
|
|
ZHANG X X, SUN T G, ZHANG Y C, CHEN L H, ZHANG X Y, LI Y J, SUN J. Identification of xylosidase genes from Verticillium dahliae and functional analysis based on HIGS technology. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231. doi: 10.3864/j.issn.0578-1752.2021.15.007. (in Chinese)
|
[18] |
DE BONT L, DONNAY N, COUTURIER J, ROUHIER N. Redox regulation of enzymes involved in sulfate assimilation and in the synthesis of sulfur-containing amino acids and glutathione in plants. Frontiers in Plant Science, 2022, 13: 958490.
|
[19] |
NIEHAUS T D, ELBADAWI-SIDHU M, DE CRECY-LAGARD V, FIEHN O, HANSON A D. Discovery of a widespread prokaryotic 5-oxoprolinase that was hiding in plain sight. Journal of Biological Chemistry, 2017, 292(39): 16360-16367.
doi: 10.1074/jbc.M117.805028
pmid: 28830929
|
[20] |
INOUE M. Glutathionists in the battlefield of gamma-glutamyl cycle. Archives of Biochemistry and Biophysics, 2016, 595: 61-63.
doi: 10.1016/j.abb.2015.11.023
pmid: 27095217
|
[21] |
KUMAR A, BACHHAWAT A K. OXP1/YKL215c encodes an ATP- dependent 5-oxoprolinase in Saccharomyces cerevisiae: Functional characterization, domain structure and identification of actin-like ATP-binding motifs in eukaryotic 5-oxoprolinases. FEMS Yeast Research, 2010, 10(4): 394-401.
|
[22] |
BAEG G J, KIM S H, CHOI D M, TRIPATHI S, HAN Y J, KIM J I. CRISPR/Cas9-mediated mutation of 5-oxoprolinase gene confers resistance to sulfonamide compounds in Arabidopsis. Plant Biotechnology Reports, 2021, 15(6): 753-764.
|
[23] |
KOEPPE S, KAWCHUK L, KALISCHUK M. RNA interference past and future applications in plants. International Journal of Molecular Sciences, 2023, 24(11): 9755.
|
[24] |
TÖR M, WOOD T, WEBB A, GÖL D, MCDOWELL J M. Recent developments in plant-downy mildew interactions. Seminars in Cell & Developmental Biology, 2023, 148/149: 42-50.
|
[25] |
WANG Z W, GAO X, ZHONG S, LI Y, SHI M R, ZHANG B R, ZHANG S C, SHEN H L, LIU X L. Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. International Journal of Biological Macromolecules, 2022, 222: 1665-1675.
|
[26] |
WANG M Y, DEAN R A. Host induced gene silencing of Magnaporthe oryzae by targeting pathogenicity and development genes to control rice blast disease. Frontiers in Plant Science, 2022, 13: 959641.
|
[27] |
WU J, YIN S L, LIN L, LIU D X, REN S C, ZHANG W J, MENG W C, CHEN P P, SUN Q F, FANG Y J, WEI C X, WANG Y P. Host-induced gene silencing of multiple pathogenic factors of Sclerotinia sclerotiorum confers resistance to Sclerotinia rot in Brassica napus. Crop Journal, 2022, 10(3): 661-671.
|
[28] |
XU Y, TAN J Y, LU J X, ZHANG Y L, LI X. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. Plant Biotechnology Journal, 2024, 22(1): 262-277.
|
[29] |
CHEN L H, CHEN B, ZHU Q H, ZHANG X Y, SUN T G, LIU F, YANG Y L, SUN J, LI Y J. Identification of sugar transporter genes and their roles in the pathogenicity of Verticillium dahliae on cotton. Frontiers in Plant Science, 2023, 14: 1123523.
|