[1] |
WANG X, WEI J, HUANG L, KANG Z. Re-evaluation of pathogens causing Valsa canker on apple in China. Mycologia, 2011, 103(2): 317-324.
|
[2] |
FENG H, WANG C L, HE Y T, TANG L, HAN P L, LIANG J H, HUANG L L. Apple Valsa canker: Insights into pathogenesis and disease control. Phytopathology Research, 2023, 5: 45.
|
[3] |
李世东. 植物医学: 我国农业现代化进程中的病害治理挑战、机遇和创新. 植物保护, 2022, 48(2): 1-8, 15.
|
|
LI S D. Phytomedicine: Challenges, opportunities and innovation in management of plant diseases for sustainable agricultural development in China. Plant Protection, 2022, 48(2): 1-8, 15. (in Chinese)
|
[4] |
BARTEL D P. Metazoan microRNAs. Cell, 2018, 173(1): 20-51.
doi: S0092-8674(18)30286-1
pmid: 29570994
|
[5] |
LU T X, ROTHENBERG M E. MicroRNA. Journal of Allergy and Clinical Immunology, 2018, 141(4): 1202-1207.
|
[6] |
|
|
LÜ S K, MA X L, ZHANG M, DENG P C, CHEN C H, ZHANG H, LIU X L, JI W Q. Post-transcriptional regulation of TaNAC genes by alternative splicing and microRNA in common wheat ( Triticum aestivum L.). Scientia Agricultura Sinica, 2021, 54(22): 4709-4727. doi: 10.3864/j.issn.0578-1752.2021.22.001. (in Chinese)
|
[7] |
LEE H C, LI L D, GU W F, XUE Z H, CROSTHWAITE S K, PERTSEMLIDIS A, LEWIS Z A, FREITAG M, SELKER E U, MELLO C C, LIU Y. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Molecular Cell, 2010, 38(6): 803-814.
|
[8] |
CRESPO-SALVADOR Ó, SÁNCHEZ-GIMÉNEZ L, LÓPEZ-GALIANO M J, FERNÁNDEZ-CRESPO E, SCHALSCHI L, GARCÍA-ROBLES I, RAUSELL C, REAL M D, GONZÁLEZ-BOSCH C. The histone marks signature in exonic and intronic regions is relevant in early response of tomato genes to Botrytis cinerea and in miRNA regulation. Plants, 2020, 9(3): 300.
|
[9] |
JIN Y, ZHAO J H, ZHAO P, ZHANG T, WANG S, GUO H S. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2019, 374(1767): 20180309.
|
[10] |
WANG B, SUN Y F, SONG N, ZHAO M X, LIU R, FENG H, WANG X J, KANG Z S. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. The New Phytologist, 2017, 215(1): 338-350.
|
[11] |
LI M H, XIE L F, WANG M, LIN Y L, ZHONG J Q, ZHANG Y, ZENG J, KONG G H, XI P G, LI H P, MA L J, JIANG Z D. FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathogens, 2022, 18(5): e1010157.
|
[12] |
ZHANG X, BAO Y L, SHAN D Q, WANG Z H, SONG X N, WANG Z Y, WANG J S, HE L Q, WU L, ZHANG Z G, NIU D D, JIN H L, ZHAO H W. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice. Plant Physiology, 2018, 177(1): 352-368.
|
[13] |
JI H M, MAO H Y, LI S J, FENG T, ZHANG Z Y, CHENG L, LUO S J, BORKOVICH K A, OUYANG S Q. Fol-milR1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by impairing host immune responses. The New Phytologist, 2021, 232(2): 705-718.
|
[14] |
XU M, GUO Y, TIAN R Z, GAO C, GUO F R, VOEGELE R T, BAO J Y, LI C J, JIA C H, FENG H, HUANG L L. Adaptive regulation of virulence genes by microRNA-like RNAs in Valsa mali. The New Phytologist, 2020, 227(3): 899-913.
|
[15] |
XU M, LI G Y, GUO Y, GAO Y Q, ZHU L H, LIU Z Y, TIAN R Z, GAO C, HAN P L, WANG N, GUO F R, BAO J Y, JIA C H, FENG H, HUANG L L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. The New Phytologist, 2022, 233(6): 2503-2519.
|
[16] |
赵彬森, 高承宇, 张健, 冯浩, 黄丽丽. Vm-milR21调控苹果黑腐皮壳侵染致病的功能和机理. 微生物学报, 2023, 63(12): 4738-4751.
|
|
ZHAO B S, GAO C Y, ZHANG J, FENG H, HUANG L L. Function and mechanism study of Vm-milR21 in the infection of apple tree Valsa canker pathogen. Acta Microbiologica Sinica, 2023, 63(12): 4738-4751. (in Chinese)
|
[17] |
FENG H, XU M, GAO Y Q, LIANG J H, GUO F R, GUO Y, HUANG L L. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in Valsa mali. Molecular Plant Pathology, 2021, 22: 243-254.
|
[18] |
GAO C Y, ZHAO B S, ZHANG J, DU X, WANG J, GUO Y, HE Y T, FENG H, HUANG L L. Adaptive regulation of miRNAs/milRNAs in tissue specific interaction between apple and Valsa mali. Horticulture Research, 2024, https://doi.org/10.1093/hr/uhae094.
|
[19] |
高静, 李艳波, 柯希望, 康振生, 黄丽丽. PEG介导的苹果腐烂病菌原生质体转化. 微生物学报, 2011, 51(9): 1194-1199.
|
|
GAO J, LI Y B, KE X W, KANG Z S, HUANG L L. Development of genetic transformation system of Valsa mali of apple mediated by PEG. Acta Microbiologica Sinica, 2011, 51(9): 1194-1199. (in Chinese)
|
[20] |
HUANG X, DUAN N, XU H, XIE T N, XUE Y R, LIU C H. CTAB-PEG DNA extraction from fungi with high contents of polysaccharides. Molekuliarnaia Biologiia, 2018, 52(4): 718-726.
|
[21] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
|
[22] |
韦洁玲, 黄丽丽, 郜佐鹏, 柯希望, 康振生. 苹果树腐烂病室内快速评价方法的研究. 植物病理学报, 2010, 40(1): 14-20.
|
|
WEI J L, HUANG L L, GAO Z P, KE X W, KANG Z S. Laboratory evaluation methods of apple Valsa canker disease caused by Valsa ceratosperma sensu Kobayashi. Acta Phytopathologica Sinica, 2010, 40(1): 14-20. (in Chinese)
|
[23] |
DANG Y K, YANG Q Y, XUE Z H, LIU Y. RNA interference in fungi: Pathways, functions, and applications. Eukaryotic Cell, 2011, 10(9): 1148-1155.
doi: 10.1128/EC.05109-11
pmid: 21724934
|
[24] |
WEIBERG A, WANG M, LIN F M, ZHAO H W, ZHANG Z H, KALOSHIAN I, HUANG H D, JIN H L. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 2013, 342(6154): 118-123.
doi: 10.1126/science.1239705
pmid: 24092744
|
[25] |
WILSON R C, DOUDNA J A. Molecular mechanisms of RNA interference. Annual Review of Biophysics, 2013, 42: 217-239.
doi: 10.1146/annurev-biophys-083012-130404
pmid: 23654304
|
[26] |
QIAO Y L, XIA R, ZHAI J X, HOU Y N, FENG L, ZHAI Y, MA W B. Small RNAs in plant immunity and virulence of filamentous pathogens. Annual Review of Phytopathology, 2021, 59: 265-288.
doi: 10.1146/annurev-phyto-121520-023514
pmid: 34077241
|
[27] |
WANG M, WEIBERG A, DELLOTA E, YAMANE D, JIN H L. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biology, 2017, 14(4): 421-428.
|
[28] |
STRUGALA R, DELVENTHAL R, SCHAFFRATH U. An organ-specific view on non-host resistance. Frontiers in Plant Science, 2015, 6: 526.
doi: 10.3389/fpls.2015.00526
pmid: 26257747
|
[29] |
WANG Q, VERA BUXA S, FURCH A, FRIEDT W, GOTTWALD S. Insights into Triticum aestivum seedling root rot caused by Fusarium graminearum. Molecular Plant-Microbe Interactions, 2015, 28(12): 1288-1303.
|
[30] |
JANSEN M, SLUSARENKO A J, SCHAFFRATH U. Competence of roots for race-specific resistance and the induction of acquired resistance against Magnaporthe oryzae. Molecular Plant Pathology, 2006, 7(3): 191-195.
|