[1] |
WANG L Y, HE S P, DIA S, SUN G F, LIU X Y, WANG X Y, PAN Z E, JIA Y H, WANG L R, PANG B Y, SUN X Z, SONG X L, DU X M. Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Industrial Crops and Products, 2021, 159: 113028.
|
[2] |
CHEN Z J, SCHEFFLER B E, DENNIS E, TRIPLETT B A, ZHANG T Z, GUO W Z, CHEN X Y, STELLY D M, RABINOWICZ P D, TOWN C D, ARIOLI T, BRUBAKER C, CANTRELL R G, LACAPE J M, ULLOA M, PENG C E, GINGLE A R, HAIGLER C H, PERCY R, SAHA S, WILKINS T, WRIGHT R J, VAN DEYNZE A, ZHU Y X, YU S X, ABDURAKHMONOV I, KATAGERI I, KUMAR P A, MEHBOOB U R, ZAFAR Y, YU J Z, KOHEL R J, WENDEL J F, PATERSON A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiology, 2007, 145(4): 1303-1310.
doi: 10.1104/pp.107.107672
pmid: 18056866
|
[3] |
GONG J W, KONG D P, LIU C W, LI P T, LIU P, XIAO X H, LIU R X, LU Q W, SHANG H H, SHI Y Z, LI J W, GE Q, LIU A Y, DENG X Y, FAN S M, PAN J T, CHEN Q J, YUAN Y L, GONG W K. Multi-environment evaluations across ecological regions reveal that the kernel oil content of cottonseed is equally determined by genotype and environment. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2529-2544.
|
[4] |
覃珊. 胚中特异性下调细胞分裂素氧化酶基因(GhCKX)促进棉花种子发育[D]. 重庆: 西南大学, 2009.
|
|
QIN S. Ovule-specific down-regulation of GhCKX gene promoted seed development of cotton (Gossypium hirsutum L.)[D]. Chongqing: Southwest University, 2009. (in Chinese)
|
[5] |
TURLEY R, CHAPMAN K. Ontogeny of cotton seeds: Gametogenesis, embryogenesis, germination, and seedling growth. Physiology of Cotton, 2010: 332-341.
|
[6] |
吴璐瑶. 陆海群体种子大小相关性状QTL定位及候选基因鉴定[D]. 郑州: 郑州大学, 2022.
|
|
WU L Y. QTL mapping of seed size-related traits in land-sea populations and identification of candidate genes[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese)
|
[7] |
SHAM P, BADER J S, CRAIG I, O'DONOVAN M, OWEN M. DNA Pooling: A tool for large-scale association studies. Nature Reviews Genetics, 2002, 3(11): 862-871.
doi: 10.1038/nrg930
pmid: 12415316
|
[8] |
XU G Y, DENG K L, YU J J, LI Q L, LI L, XIANG A N, LING Y H, ZHANG C W, ZHAO F M. Genetic effects analysis of QTLs for rice grain size based on CSSL-Z403 and its dissected single and dual-segment substitution lines. International Journal of Molecular Sciences, 2023, 24(15): 12013.
|
[9] |
SHI H, YUN P, ZHU Y, WANG L, LI P B, LOU G M, XIA D, ZHANG Q L, XIAO J H, LI X H, HE Y Q, GAO G J. Fine mapping of qTGW2b and qGL9, two minor QTL conferring grain size and weight in rice. Molecular Breeding, 2022, 42(11): 68.
|
[10] |
JIANG A H, LIU J Q, GAO W R, MA R H, TAN P T, LIU F, ZHANG J. Construction of a genetic map and QTL mapping of seed size traits in soybean. Frontiers in Genetics, 2023, 14: 1248315.
|
[11] |
LUO S L, JIA J, LIU R Q, WEI R Q, GUO Z B, CAI Z D, CHEN B, LIANG F W, XIA Q J, NIAN H, CHENG Y B. Identification of major QTLs for soybean seed size and seed weight traits using a RIL population in different environments. Frontiers in Plant Science, 2023, 13: 1094112.
|
[12] |
张泽源, 李玥, 赵文莎, 顾晶晶, 张傲琰, 张海龙, 宋鹏博, 吴建辉, 张传量, 宋全昊, 简俊涛, 孙道杰, 王兴荣. 小麦粒重相关性状的QTL定位及分子标记的开发. 中国农业科学, 2023, 56(21): 4137-4149. doi: 10.3864/j.issn.0578-1752.2023.21.001.
|
|
ZHANG Z Y, LI Y, ZHAO W S, GU J J, ZHANG A Y, ZHANG H L, SONG P B, WU J H, ZHANG C L, SONG Q H, JIAN J T, SUN D J, WANG X R. QTL Mapping and molecular marker development of traits related to grain weight in wheat. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149. doi: 10.3864/j.issn.0578-1752.2023.21.001. (in Chinese)
|
[13] |
ZUO J R, LI J Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annual Review of Genetics, 2014, 48: 99-118.
doi: 10.1146/annurev-genet-120213-092138
pmid: 25149369
|
[14] |
WANG W W, SUN Y, YANG P, CAI X Y, YANG L, MA J R, OU Y C, LIU T P, ALI I, LIU D J, ZHANG J, TENG Z H, GUO K, LIU D X, LIU F, ZHANG Z S. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019, 20(1): 599.
|
[15] |
DUAN P G, XU J S, ZENG D L, ZHANG B L, GENG M F, ZHANG G Z, HUANG K, HUANG L J, XU R, GE S, QIAN Q, LI Y H. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant, 2017, 10(5): 685-694.
|
[16] |
SI L Z, CHEN J Y, HUANG X H, GONG H, LUO J H, HOU Q Q, ZHOU T Y, LU T T, ZHU J J, SHANGGUAN Y Y, CHEN E W, GONG C X, ZHAO Q, JING Y F, ZHAO Y, LI Y, CUI L L, FAN D L, LU Y Q, WENG Q J, WANG Y C, ZHAN Q L, LIU K Y, WEI X H, AN K, AN G, HAN B. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48(4): 447-456.
|
[17] |
BHAT J A, ADEBOYE K A, GANIE S A, BARMUKH R, HU D Z, VARSHNEY R K, YU D Y. Genome-wide association study, haplotype analysis, and genomic prediction reveal the genetic basis of yield-related traits in soybean (Glycine max L.). Frontiers in Genetics, 2022, 13: 953833.
|
[18] |
YU H T, HAO Y C, LI M Y, DONG L H, CHE N X, WANG L J, SONG S, LIU Y N, KONG L R, SHI S B. Genetic architecture and candidate gene identification for grain size in bread wheat by GWAS. Frontiers in Plant Science, 2022, 13: 1072904.
|
[19] |
LI X W, WANG M, ZHANG R Y, FANG H, FU X Y, YANG X H, LI J S. Genetic architecture of embryo size and related traits in maize. The Crop Journal, 2022, 10(1): 204-215.
|
[20] |
|
|
MA Y M, LOU H Y, ZHANG S J, WANG W, GUO Y, NI Z F, LIU J. Genome-wide association analysis of yield traits in Xinjiang winter wheat germplasm. Scientia Agricultura Sinica, 2023, 56(18): 3487-3499. doi: 10.3864/j.issn.0578-1752.2023.18.001. (in Chinese)
|
[21] |
柯会锋, 孙正文, 王国宁, 孟成生, 吴立强. 棉籽大小与形状关联标记发掘及候选基因筛选. 中国农业科技导报, 2022, 24(11): 76-86.
doi: 10.13304/j.nykjdb.2022.0341
|
|
KE H F, SUN Z W, WANG G N, MENG C S, WU L Q. Mining and screening of associated markers and candidate genes related to seed size and shape in cotton. Journal of Agricultural Science and Technology, 2022, 24(11): 76-86. (in Chinese)
doi: 10.13304/j.nykjdb.2022.0341
|
[22] |
ZHAO J, BAI W Q, ZENG Q W, SONG S Q, ZHANG M, LI X B, HOU L, XIAO Y H, LUO M, LI D M, LUO X Y, PEI Y. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Molecular Breeding, 2015, 35(2): 60.
|
[23] |
肖杰, 高趁光, 王娜, 王怡, 许喜棠, 王成社, 谢彦周. 基于SmartGrain软件的小麦籽粒形态测量方法. 麦类作物学报, 2014, 34(11): 1572-1576.
|
|
XIAO J, GAO C G, WANG N, WANG Y, XU X T, WANG C S, XIE Y Z. A measuring method for seed shape of common wheat (Tritium aestivum) based on SmartGrain software. Journal of Triticeae Crops, 2014, 34(11): 1572-1576. (in Chinese)
|
[24] |
NIU H, KUANG M, HUANG L Y, SHANG H H, YUAN Y L, GE Q. Lint percentage and boll weight QTLs in three excellent upland cotton (Gossypium hirsutum): ZR014121, CCRI60, and EZ60. BMC Plant Biology, 2023, 23(1): 179.
|
[25] |
LI M, ZHANG Y W, ZHANG Z C, XIANG Y, LIU M H, ZHOU Y H, ZUO J F, ZHANG H Q, CHEN Y, ZHANG Y M. A compressed variance component mixed model for detecting QTNs, and QTN-by- environment and QTN-by-QTN interactions in genome-wide association studies. Molecular Plant, 2022, 15(4): 630-650.
|
[26] |
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc.TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
|
[27] |
YANG Z H, WU X, YANG Y M, QU Y W, XU J R, WU D P, LI D M, HAN Y P, ZHAO X, LI Y G. Identification of QTNs, QEIs interactions and genes for isoflavones in soybean seeds. Industrial Crops and Products, 2023, 197: 116631.
|
[28] |
李蓓, 姚金波, 李燕, 朱守鸿, 房圣涛, 陈伟, 张永山. 棉花籽指数量性状位点(QTL)的初步定位. 中国棉花, 2022, 49(3): 5-8.
doi: 10.11963/cc20210192
|
|
LI B, YAO J B, LI Y, ZHU S H, FANG S T, CHEN W, ZHANG Y S. Preliminary mapping of quantitative trait loci (QTL) for seed index of cotton. China Cotton, 2022, 49(3): 5-8. (in Chinese)
doi: 10.11963/cc20210192
|
[29] |
WU W R, LI W M, LU H R. Number of selfings required to produce a population of recombinant inbred lines. Journal of Fujian Agricultural University, 1997(2): 129-132. (in Chinese)
|
[30] |
ZHANG J F, LU Y, ADRAGNA H, HUGHS E. Genetic improvement of new Mexico acala cotton germplasm and their genetic diversity. Crop Science, 2005, 45(6): 2363-2373.
|
[31] |
WEST M A L, HARADA J J. Embryogenesis in higher plants: An overview. The Plant Cell, 1993, 5(10): 1361-1369.
pmid: 12271035
|
[32] |
杨书贤. 棉花GhDA1-1A和GhGW2-2D调控种子大小的功能鉴定[D]. 郑州: 郑州大学, 2021.
|
|
YANG S X. Functional verification ofGhDA1-1A and GhGW2-2D regulating seed size in cotton[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese)
|
[33] |
CHLUBA-DE TAPIA J, DE TAPIA M, JÄGGIN V, EBERLE A N. Cloning of a human multispanning membrane protein cDNA: Evidence for a new protein family. Gene, 1997, 197(1/2): 195-204.
|
[34] |
VERNAY A, LAMRABET O, PERRIN J, COSSON P. TM9SF 4 levels determine sorting of transmembrane domains in the early secretory pathway. Journal of Cell Science, 2018, 131(21): 220830.
|
[35] |
钮洁, 李萌. 珙桐种子发育相关的MYB基因家族成员的鉴定及表达分析. 分子植物育种, 2022, 1-14. [2024-03-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20221130.1743.020.html.
|
|
NIU J, LI M. Identification and expression analysis of MYB gene family members associated with davidia involucrata baill. Molecular Plant Breeding, 2022, 1-14. [2024-03-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20221130.1743.020.html. in Chinese)
|
[36] |
SHIN R, BURCH A Y, HUPPERT K A, TIWARI S B, MURPHY A S, GUILFOYLE T J, SCHACHTMAN D P. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. The Plant Cell, 2007, 19(8): 2440-2453.
|
[37] |
CAO Y P, LI K, LI Y L, ZHAO X P, WANG L H. MYB transcription factors as regulators of secondary metabolism in plants. Biology, 2020, 9(3): 61.
|
[38] |
AMBAWAT S, SHARMA P, YADAV N R, YADAV R C. MYB transcription factor genes as regulators for plant responses: An overview. Physiology and Molecular Biology of Plants, 2013, 19(3): 307-321.
doi: 10.1007/s12298-013-0179-1
pmid: 24431500
|
[39] |
YI Y, LIN C, PENG X Y, ZHANG M S, WU J M, MENG C M, GE S C, LIU Y F, SU Y. R3-MYB proteins OsTCL1 and OsTCL2 modulate seed germination via dual pathways in rice. The Crop Journal, 2023, 11(6): 1752-1761.
|
[40] |
ZHANG Y J, LIANG W Q, SHI J X, XU J, ZHANG D B. MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. Journal of Integrative Plant Biology, 2013, 55(11): 1166-1178.
|