中国农业科学 ›› 2022, Vol. 55 ›› Issue (24): 4927-4942.doi: 10.3864/j.issn.0578-1752.2022.24.011
收稿日期:
2022-03-21
接受日期:
2022-06-06
出版日期:
2022-12-16
发布日期:
2023-01-04
通讯作者:
赵武奇,胡新中
作者简介:
刘振蓉,E-mail:基金资助:
LIU ZhenRong(),ZHAO WuQi(
),HU XinZhong(
),HE LiuCheng,CHEN YueYuan
Received:
2022-03-21
Accepted:
2022-06-06
Online:
2022-12-16
Published:
2023-01-04
Contact:
WuQi ZHAO,XinZhong HU
摘要:
【目的】研究不同干燥模式、干燥因素和干燥工艺参数对燕麦挂面干燥品质和单位能耗的影响,建立模型并进行多目标优化,以期得到品质好、能耗低的燕麦挂面干燥模式及工艺参数。【方法】研究9种不同温湿度干燥模式对燕麦挂面干燥品质及单位能耗的影响,对最佳煮制时间、蒸煮损失、烹调吸水率、延展性、硬度、咀嚼性、黏着性、抗弯曲强度、折断距离、酸度和脂肪酸值等指标进行因子分析,得出品质综合评价值,确定燕麦挂面的最佳干燥模式;利用Plackett-Burman试验对燕麦挂面三段变温变湿干燥工艺中的第一阶段温度、第一阶段相对湿度、第二阶段温度、第二阶段相对湿度、第三阶段温度和第三阶段相对湿度6个影响因素进行关键因素筛选,利用Box-Behnken响应面试验设计优化干燥工艺,得出最佳参数并加以验证。【结果】燕麦挂面的最佳干燥模式为升温降温结合降湿的三段变温变湿干燥模式。通过Plackett-Burman试验得出燕麦挂面干燥的关键因素为第一阶段相对湿度、第二阶段温度和第三阶段相对湿度;建立的燕麦挂面干燥工艺参数与单位能耗和品质综合评分的回归模型显著(P<0.05)。各因子对单位能耗有极显著影响,第一阶段相对湿度及第二阶段温度和第二阶段相对湿度交互作用极显著;各因子对品质综合评分有极显著影响,影响大小依次为第二阶段温度>第二阶段相对湿度>第一阶段相对湿度,第一阶段相对湿度和第二阶段相对湿度交互作用显著。燕麦挂面三段变温变湿干燥工艺的最佳工艺参数为:第一阶段温度25℃、第一阶段相对湿度88%,第二阶段温度43℃、第二阶段相对湿度71%,第三阶段温度35℃、第三阶段相对湿度50%;在此条件下,燕麦挂面的单位能耗为93.42 kJ·g-1,综合评分为1.02。【结论】建立的二次多项式回归模型可用于分析和预测干燥工艺参数对燕麦挂面能耗和品质综合评分的影响。分段变温变湿干燥能够提高燕麦挂面干燥品质的同时降低能耗。利用试验设计和数据处理技术分步解决燕麦挂面干燥工艺的方法全面高效,结果直观、准确,能够提高试验效率和精度。研究为燕麦挂面的工业化生产及节能降耗提供了理论依据。
刘振蓉,赵武奇,胡新中,贺刘成,陈月圆. 燕麦挂面制作过程中干燥工艺优化研究[J]. 中国农业科学, 2022, 55(24): 4927-4942.
LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production[J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
表1
燕麦挂面不同干燥模式的试验设计"
干燥模式 Dry mode | 序号 Serial number | 第一阶段干燥 First stage drying | 第二阶段干燥 Second stage drying | 第三阶段干燥 Third stage drying | |||
---|---|---|---|---|---|---|---|
温度/湿度 Temperature (℃)/ Humidity (%) | 水分含量 Moisture content (%) | 温度/湿度 Temperature (℃)/ Humidity (%) | 水分含量 Moisture content (%) | 温度/湿度 Temperature (℃)/ Humidity (%) | 水分含量 Moisture content (%) | ||
恒温恒湿 Constant temperature and humidity | 1 | 40℃/75% | / | 40℃/75% | / | 40℃/75% | ≤14.5% |
变温变湿(两段) Alternating temperature and humidity (two-section) | 2 | 40℃/75% | / | 40℃/75% | 16%-17% | 50℃/65% | ≤14.5% |
3 | 40℃/75% | / | 40℃/75% | 16%-17% | 30℃/65% | ≤14.5% | |
变温变湿(三段) Alternating temperature and humidity (three-section) | 4 | 30℃/65% | 27%-28% | 40℃/75% | 16%-17% | 30℃/65% | ≤14.5% |
5 | 30℃/85% | 27%-28% | 40℃/75% | 16%-17% | 30℃/65% | ≤14.5% | |
6 | 30℃/65% | 27%-28% | 40℃/75% | 16%-17% | 50℃/65% | ≤14.5% | |
7 | 30℃/85% | 27%-28% | 40℃/75% | 16%-17% | 50℃/65% | ≤14.5% | |
8 | 30℃/75% | 27%-28% | 40℃/75% | 16%-17% | 50℃/75% | ≤14.5% | |
9 | 40℃/85% | 27%-28% | 40℃/75% | 16%-17% | 40℃/65% | ≤14.5% |
表2
PBD因素水平表"
因素 Factor | 代表字母 Letter | 水平 Level | |
---|---|---|---|
-1 | 1 | ||
第一阶段温度First stage temperature (℃) | A | 25℃ | 35℃ |
第一阶段相对湿度First stage relative humidity (%) | B | 80% | 90% |
第二阶段温度Second stage temperature (℃) | C | 40℃ | 50℃ |
第二阶段相对湿度Second stage relative humidity (%) | D | 65% | 75% |
第三阶段温度 Third stage temperature (℃) | E | 25℃ | 35℃ |
第三阶段相对湿度Third stage relative humidity (%) | F | 50% | 60% |
表4
不同干燥模式下燕麦挂面综合评价结果"
序号 Code | 酸度 Acidity (mL/10 g) | 脂肪酸值 Fatty acid value (mg/100 g) | 最佳煮 制时间 Optimum cooking time (s) | 蒸煮损失 Cooking loss (%) | 烹调吸水率 Cooking water absorption (%) | 延展性 Ductility (g·s-1) | 硬度 Hardness (g) | 咀嚼性 Chewiness (g·s) | 黏着性 Adhesiveness (g·s) | 抗弯曲强度 Bending strength (g) | 折断距离 Breaking distance (mm) | 主成分 F1值 Principal component F1 | 主成分 F2值 Principal component F2 | 品质综合评分 FA值 Comprehensive quality score | 单位能耗 Unite energy consumption (kJ·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.03 | 31.32 | 322.50 | 10.67 | 169.70 | 0.29 | 51.81 | 18.71 | 1.31 | 10.12 | 30.77 | -1.62 | 0.63 | -1.04 | 122.20 |
2 | 3.45 | 33.32 | 322.50 | 10.42 | 170.05 | 0.30 | 51.76 | 18.82 | 1.22 | 9.95 | 31.12 | -1.08 | -0.20 | -0.85 | 92.48 |
3 | 3.15 | 27.33 | 320.00 | 10.61 | 170.44 | 0.30 | 46.80 | 19.07 | 1.14 | 10.19 | 30.86 | -0.81 | 1.19 | -0.30 | 92.48 |
4 | 3.30 | 31.32 | 312.5 | 9.39 | 172.07 | 0.31 | 47.59 | 19.62 | 1.04 | 10.72 | 30.93 | 0.52 | -0.06 | 0.37 | 75.96 |
5 | 2.85 | 26.53 | 307.50 | 8.92 | 173.37 | 0.33 | 46.23 | 20.07 | 0.94 | 11.03 | 31.79 | 1.45 | 1.32 | 1.42 | 82.57 |
6 | 3.55 | 34.12 | 315.00 | 9.27 | 171.01 | 0.31 | 48.79 | 19.29 | 1.15 | 10.60 | 30.95 | 0.29 | -0.88 | -0.01 | 105.69 |
7 | 3.65 | 35.31 | 317.50 | 9.01 | 171.90 | 0.31 | 48.18 | 19.45 | 1.11 | 10.38 | 31.27 | 0.50 | -1.12 | 0.08 | 112.29 |
8 | 3.85 | 34.51 | 312.50 | 9.84 | 171.71 | 0.30 | 49.96 | 18.91 | 1.20 | 10.20 | 30.71 | -0.14 | -1.43 | -0.48 | 95.78 |
9 | 3.25 | 28.53 | 312.50 | 9.30 | 172.59 | 0.32 | 47.15 | 19.86 | 0.99 | 10.82 | 31.48 | 0.91 | 0.55 | 0.81 | 125.50 |
表5
PBD试验设计与结果"
Run | 第一阶段 First stage | 第二阶段 Second stage | 第三阶段 The third stage | 最佳煮 制时间 Optimum cooking time (s) | 蒸煮 损失Cooking loss (%) | 烹调吸 水率Cooking water absorption (%) | 延展性Ductility (g·s-1) | 硬度Hardness (g) | 咀嚼性Chewiness (g·s) | 黏着性Adhesiveness (g·s) | 抗弯曲强度Bending strength (g) | 折断 距离Breaking distance (mm) | 酸度 Acidity (mL/10 g) | 脂肪酸值 Fatty acid value (mg/100 g) | 主成分 F1值 Principal component F1 | 主成分 F2值 Principal component F2 | 品质综 合评分 FB值 Compre- hensive quality score | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A温度 Temperature (℃) | B相对 湿度 Relative humidity (%) | C温度 Temperature (℃) | D相对 湿度 Relative humidity (%) | E温度 Temperature (℃) | F相对 湿度 Relative humidity (%) | |||||||||||||||
1 | 25℃ | 90% | 50℃ | 65% | 35℃ | 50% | 285.00 | 8.41 | 183.95 | 0.317 | 49.06 | 19.54 | 1.105 | 10.76 | 30.87 | 3.88 | 33.05 | 0.40 | -1.42 | -0.06 |
2 | 35℃ | 80% | 50℃ | 75% | 25℃ | 60% | 295.00 | 8.63 | 180.91 | 0.308 | 49.93 | 19.26 | 1.171 | 10.52 | 30.67 | 3.45 | 31.64 | -0.64 | -.15 | -0.52 |
3 | 25℃ | 90% | 40℃ | 65% | 25℃ | 60% | 280.00 | 8.20 | 183.97 | 0.318 | 49.08 | 19.47 | 1.101 | 10.74 | 30.98 | 3.11 | 29.77 | -0.16 | 0.63 | 0.04 |
4 | 35℃ | 80% | 50℃ | 65% | 25℃ | 50% | 305.00 | 9.27 | 178.60 | 0.294 | 51.47 | 19.03 | 1.257 | 10.06 | 30.1 | 3.52 | 31.92 | -1.62 | -0.05 | -1.23 |
5 | 35℃ | 90% | 40℃ | 75% | 25℃ | 50% | 255.00 | 7.75 | 187.82 | 0.332 | 47.31 | 20.11 | 0.921 | 11.46 | 31.88 | 3.21 | 29.83 | 1.51 | -0.04 | 1.12 |
6 | 35℃ | 90% | 50℃ | 65% | 35℃ | 60% | 310.00 | 8.98 | 176.74 | 0.301 | 52.03 | 18.85 | 1.301 | 10.524 | 30.07 | 3.76 | 32.11 | -1.47 | -0.47 | -1.22 |
7 | 35℃ | 90% | 40℃ | 75% | 35℃ | 50% | 275.00 | 7.89 | 188.42 | 0.334 | 46.62 | 20.08 | 0.933 | 11.32 | 31.56 | 3.22 | 30.13 | 1.26 | -0.02 | 0.94 |
8 | 25℃ | 80% | 50℃ | 75% | 35℃ | 50% | 295.00 | 8.72 | 181.10 | 0.307 | 49.86 | 19.31 | 1.169 | 10.61 | 30.71 | 3.57 | 33.51 | -0.39 | -0.84 | -0.5 |
9 | 25℃ | 90% | 50℃ | 75% | 25℃ | 60% | 285.00 | 8.31 | 183.86 | 0.319 | 49.01 | 19.57 | 1.103 | 10.77 | 30.94 | 3.83 | 33.77 | 0.50 | -1.54 | -0.01 |
10 | 35℃ | 80% | 40℃ | 65% | 35℃ | 60% | 285.00 | 8.08 | 183.99 | 0.317 | 48.82 | 19.81 | 1.079 | 10.86 | 30.96 | 2.94 | 27.33 | -0.33 | 1.58 | 0.15 |
11 | 25℃ | 80% | 40℃ | 75% | 35℃ | 60% | 275.00 | 7.38 | 187.88 | 0.335 | 46.71 | 20.13 | 0.917 | 11.36 | 31.67 | 2.97 | 27.96 | 1.10 | 0.99 | 1.07 |
12 | 25℃ | 80% | 40℃ | 65% | 25℃ | 50% | 285.00 | 8.11 | 184.49 | 0.318 | 48.76 | 19.83 | 1.086 | 10.96 | 31.09 | 2.96 | 28.02 | -0.17 | 1.33 | 0.21 |
表6
PBD试验方差分析结果"
项 Item | 效应 Effect | 系数 Coefficient | T-value | P-value | 显著性排序 Significance ranking |
---|---|---|---|---|---|
常量Constant | -0.001 | 13.18 | 0.022 | ||
第一阶段温度First stage temperature (℃) | -0.252 | 0.126 | -1.16 | 0.297 | 4 |
第一阶段相对湿度First stage relative humidity (%) | 0.272 | 0.136 | 1.32 | 0.245 | 3 |
第二阶段温度Second stage temperature (℃) | -1.178 | -0.589 | -5.43 | 0.003 | 1 |
第二阶段相对湿度Second stage relative humidity (%) | 0.702 | 0.351 | 3.33 | 0.021 | 2 |
第三阶段温度 Third stage temperature (℃) | 0.128 | 0.064 | 0.64 | 0.549 | 6 |
第三阶段相对湿度Third stage relative humidity (%) | -0.162 | -0.081 | -0.78 | 0.472 | 5 |
表7
响应面设计与结果"
编号 Code | A第一 阶段相 对湿度 First stage relative humidity (%) | B第二阶 段温度 Second stage temperature (℃) | C第二阶段相对湿度 Second stage relative humidity (%) | 最佳煮 制时间 Optimum cooking time (s) | 蒸煮 损失 Cooking loss (%) | 烹调 吸水率 Cooking water absorption (%) | 延展性 Ductility (g·s-1) | 硬度 Hardness (g) | 咀嚼性 Chewiness (g·s) | 黏着性 Adhesiveness (g·s) | 抗弯曲 强度 Bending strength (g) | 折断距离 Breaking distance (mm) | 酸度 Acidity (mL/10 g) | 脂肪酸值 Fatty acid value (mg/100 g) | 主成分 F1值 Principal component F1 | 主成分 F2值 Principal component F2 | 品质综合 评分FC值 Comprehensive quality score | 单位能耗 Unite energy consumption (kJ·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 80 | 50 | 70 | 313.00 | 8.31 | 185.11 | 0.311 | 48.06 | 19.30 | 1.10 | 10.84 | 31.10 | 3.23 | 28.41 | -0.29 | 0.51 | 0.01 | 52.84 |
2 | 80 | 50 | 70 | 314.50 | 8.33 | 184.96 | 0.310 | 48.09 | 19.25 | 1.105 | 10.82 | 31.06 | 3.26 | 28.50 | -0.26 | 0.35 | -0.04 | 56.15 |
3 | 80 | 50 | 70 | 317.00 | 8.27 | 185.18 | 0.314 | 47.97 | 19.38 | 1.086 | 10.90 | 31.18 | 3.17 | 28.17 | -0.24 | 0.63 | 0.08 | 52.84 |
4 | 80 | 40 | 60 | 306.00 | 8.11 | 185.69 | 0.324 | 47.64 | 19.64 | 1.032 | 11.14 | 31.47 | 2.94 | 27.42 | 0.46 | 0.69 | 0.55 | 71.01 |
5 | 80 | 40 | 80 | 303.50 | 8.02 | 186.01 | 0.330 | 47.48 | 19.80 | 1.002 | 11.27 | 31.64 | 2.85 | 26.93 | 0.62 | 0.98 | 0.75 | 138.72 |
6 | 80 | 50 | 70 | 312.50 | 8.35 | 184.81 | 0.308 | 48.13 | 19.21 | 1.114 | 10.79 | 31.03 | 3.29 | 28.60 | -0.15 | 0.09 | 0.16 | 51.85 |
7 | 90 | 60 | 70 | 330.50 | 8.63 | 183.76 | 0.290 | 48.67 | 18.73 | 1.203 | 10.38 | 30.52 | 3.70 | 30.02 | -1.14 | -0.34 | -0.84 | 49.54 |
8 | 80 | 60 | 80 | 328.00 | 8.55 | 183.98 | 0.295 | 48.53 | 18.87 | 1.178 | 10.49 | 30.66 | 3.60 | 29.57 | -0.86 | -0.26 | -0.64 | 75.96 |
9 | 70 | 50 | 80 | 307.50 | 8.24 | 185.21 | 0.317 | 47.89 | 19.43 | 1.076 | 10.96 | 31.23 | 3.12 | 27.97 | 0.26 | 0.27 | 0.26 | 102.39 |
10 | 80 | 50 | 70 | 320.00 | 8.41 | 184.67 | 0.304 | 48.24 | 19.15 | 1.130 | 10.71 | 30.92 | 3.38 | 28.85 | -0.54 | 0.24 | 0.05 | 57.47 |
11 | 70 | 60 | 70 | 334.50 | 8.77 | 182.73 | 0.281 | 48.97 | 18.48 | 1.250 | 10.18 | 30.25 | 3.52 | 30.14 | -0.06 | -2.41 | -0.94 | 42.94 |
12 | 90 | 40 | 70 | 290.00 | 7.85 | 185.36 | 0.341 | 47.12 | 20.11 | 0.945 | 11.51 | 31.95 | 2.54 | 26.11 | 3.04 | -1.24 | 1.44 | 108.99 |
13 | 70 | 40 | 70 | 296.50 | 7.94 | 186.77 | 0.335 | 47.3 | 19.97 | 0.975 | 11.38 | 31.76 | 2.67 | 26.21 | 0.55 | 1.72 | 1.04 | 92.48 |
14 | 90 | 50 | 80 | 310.00 | 8.19 | 185.33 | 0.319 | 47.81 | 19.51 | 1.052 | 11.02 | 31.32 | 3.07 | 28.25 | 0.17 | 0.52 | 0.3 | 95.78 |
15 | 70 | 50 | 60 | 324.00 | 8.49 | 183.57 | 0.299 | 48.4 | 18.98 | 1.159 | 10.58 | 30.77 | 3.51 | 29.31 | 0.17 | -1.31 | -0.48 | 46.24 |
16 | 80 | 60 | 60 | 335.00 | 8.89 | 182.86 | 0.273 | 49.21 | 18.27 | 1.291 | 10.01 | 30.03 | 4.10 | 31.23 | -1.77 | -0.97 | -1.47 | 39.63 |
17 | 90 | 50 | 60 | 317.00 | 8.17 | 185.17 | 0.317 | 47.91 | 19.48 | 1.056 | 10.96 | 31.32 | 3.12 | 28.03 | 0.04 | 0.52 | 0.24 | 69.36 |
[1] |
LI M, ZHU K X, WANG B W, GUO X N. Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment. Food Chemistry, 2015, 135(4): 2163-2169. doi: 10.1016/j.foodchem.2012.06.103.
doi: 10.1016/j.foodchem.2012.06.103 |
[2] |
姚惠源. 中国粮食加工科技与产业的发展现状与趋势. 中国农业科学, 2015, 48(17): 3541-3546. doi: 10.3864/j.issn.0578-1752.2015.17.019.
doi: 10.3864/j.issn.0578-1752.2015.17.019 |
YAO H Y. The present development status and tendency of grain processing technology and industry in China. Scientia Agricultura Sinica, 2015, 48(17): 3541-3546. doi: 10.3864/j.issn.0578-1752.2015.17.019. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.019 |
|
[3] |
崔丽琴, 崔素萍, 马平, 张丽萍, 张洪微. 豆渣粉对小麦面团、馒头质构特性及馒头品质的影响. 食品科学, 2014, 35(5): 85-88. doi: 10.7506/spkx1002-6630-201405017.
doi: 10.7506/spkx1002-6630-201405017 |
CUI L Q, CUI S P, MA P, ZHANG L P, ZHANG H W. Effect of soybean dregs powder on sensory evaluation of Chinese steamed bread (CSB) and textural properties of wheat dough and CSB. Food Science, 2014, 35(5): 85-88. doi: 10.7506/spkx1002-6630-201405017. (in Chinese)
doi: 10.7506/spkx1002-6630-201405017 |
|
[4] | 王钰麟, 雷琳, 熊文文, 叶发银, 赵国华. 蒸煮-老化预处理对炒制青稞粉理化性质及体外淀粉消化的影响. 中国农业科学, 2021, 54(19): 4207-4217. |
WANG Y L, LEI L, XIONG W W, YE F Y, ZHAO G H. Effects of steaming-retrogradation pretreatment on physicochemical properties and in vitro starch digestibility of the roasted highland barley flour. Scientia Agricultura Sinica, 2021, 54(19):4207-4217. (in Chinese) | |
[5] |
AYDIN E, GOCMEN D. Cooking quality and sensorial properties of noodle supplemented with oat flour. Food Science and Biotechnology, 2011, 20(2): 507-511. doi: 10.1007/s10068-011-0070-1.
doi: 10.1007/s10068-011-0070-1 |
[6] | 陈曦, 李叶贝, 屈展平, 张乐道, 任广跃. 马铃薯-燕麦复合面条的研制. 食品科技, 2017, 42(10): 148-152. |
CHEN X, LI Y B, QU Z P, ZHANG Y D, REN G Y. Development of potato-oat compound nutrition noodle. Food Science and Technology, 2017, 42(10): 148-152. (in Chinese) | |
[7] |
CHEN J S, FEI M J, SHI C L, TIAN J C, SUN C L, ZHANG H, MA Z, DONG H X. Effect of particle size and addition level of wheat bran on quality of dry white Chinese noodles. Journal of Cereal Science, 2011, 53(2): 217-224. doi: 10.1016/j.jcs.2010.12.005.
doi: 10.1016/j.jcs.2010.12.005 |
[8] |
余可, 刘磊, 张瑞芬, 池建伟, 贾栩超, 张名位. 预酶解-滚筒干燥加工工艺对全麦片品质的影响. 中国农业科学, 2020, 53(6): 1256-1268.
doi: CNKI:SUN:ZNYK.0.2020-06-017 |
YU K, LIU L, ZHANG R F, CHI J W, JIA X C, ZHANG M W. Effect of pre-enzymatic-drum drying process on the quality of whole wheat flakes. Scientia Agricultura Sinica, 2020, 53(6): 1256-1268. doi: CNKI:SUN:ZNYK.0.2020-06-017. (in Chinese)
doi: CNKI:SUN:ZNYK.0.2020-06-017 |
|
[9] |
BASMAN A, YALCIN S. Quick-boiling noodle production by using infrared drying. Journal of Food Engineering, 2011, 106(3): 245-252.
doi: 10.1016/j.jfoodeng.2011.05.019 |
[10] |
武亮, 张影全, 王振华, 于晓磊, 魏益民. 挂面干燥特性与模型拟合研究. 中国食品学报, 2019, 19(8): 119-129. doi: 10.16429/j.1009-7848.2019.08.014.
doi: 10.16429/j.1009-7848.2019.08.014 |
WU L, ZHANG Y Q, WANG Z H, YU X L, WEI Y M. Studies on drying characteristics and modelling of Chinese dried noodle. Journal of Chinese Institute of Food Science and Technology, 2019, 19(8): 119-129. doi: 10.16429/j.1009-7848.2019.08.014. (in Chinese)
doi: 10.16429/j.1009-7848.2019.08.014 |
|
[11] |
魏益民, 王杰, 张影全, 张波, 刘锐, 王振华. 挂面的干燥特性及其与干燥条件的关系. 中国食品学报, 2017, 17(1): 62-68. doi: 10.16429/j.1009-7848.2017.01.008.
doi: 10.16429/j.1009-7848.2017.01.008 |
WEI Y M, WANG J, ZHANG Y Q, ZHANG B, WANG Z H. Relations between drying characteristics and drying conditions of Chinese dried noodle. Journal of Chinese Institute of Food Science and Technology, 2017, 17(1): 62-68. doi: 10.16429/j.1009-7848.2017.01.008. (in Chinese)
doi: 10.16429/j.1009-7848.2017.01.008 |
|
[12] |
惠滢, 张影全, 张波, 刘锐, 王振华. 高温、高湿干燥工艺对挂面产品特性的影响. 中国食品学报, 2019, 19(10): 117-125. doi: b79f093ed51046559c7dc41002728f57.
doi: b79f093ed51046559c7dc41002728f57 |
HUI Y, ZHANG Y Q, ZHANG B, WANG Z H. Effects of high temperature and relative humidity drying technology on the product properties of Chinese dried noodles. Journal of Chinese Institute of Food Science and Technology, 2019, 19(10): 117-125. doi: b79f093ed51046559c7dc41002728f57. (in Chinese)
doi: b79f093ed51046559c7dc41002728f57 |
|
[13] | 张影全, 惠滢, 张波, 于晓磊, 张国权, 魏益民. 不同干燥条件下挂面烹饪特性比较分析. 现代食品科技, 2021, 37(1): 164-171. |
ZHANG Y Q, HUI Y, ZHANG B, YU X L, ZHANG G Q, WEI Y M. Comparative Analysis of the Cooking Quality of Chinese Dried Noodles under Different Drying Parameters. Modern Food Science and Technology, 2021, 37(1): 164-171. (in Chinese) | |
[14] |
郭颖, 陆启玉. 高温烘干挂面品质研究. 粮食与油脂, 2014, 27(11): 35-38. doi: 10.3969/j.issn.1008-9578.2014.11.009.
doi: 10.3969/j.issn.1008-9578.2014.11.009 |
GUO Y, LU Q Y. Research on the quality of vermicelli of the high temperature drying. Cereals & Oils, 2014, 27(11): 35-38. doi: 10.3969/j.issn.1008-9578.2014.11.009. (in Chinese)
doi: 10.3969/j.issn.1008-9578.2014.11.009 |
|
[15] |
张仲欣, 许凯, 许丹, 任广跃. 绿麦挂面配方及干燥工艺参数优化. 河南科技大学学报(自然科学版), 2017, 38(6): 63-69. doi: 10.15926/j.cnki.issn1672-6871.2017.06.013.
doi: 10.15926/j.cnki.issn1672-6871.2017.06.013 |
ZHANG Z X, XU K, XU D, REN G Y. Optimization of formula and drying process parameters of green wheat noodles. Journal of Henan University of Science and Technology (Natural Science Edition), 2017, 38(6): 63-69. doi: 10.15926/j.cnki.issn1672-6871.2017.06.013. (in Chinese)
doi: 10.15926/j.cnki.issn1672-6871.2017.06.013 |
|
[16] |
王春, 高飞, 陈洁, 程娟. 温度对挂面干燥工艺品质的影响. 粮食与饲料工业, 2010, 13(6): 33-35. doi: 10.3969/j.issn.1003-6202.2010.06.011.
doi: 10.3969/j.issn.1003-6202.2010.06.011 |
WANG C, GAO F, CHEN J, CHENG J. Effect of temperature on the quality of of vermicelli drying. Cereal & Feed Industry, 2010, 3(6): 33-35. doi: 10.3969/j.issn.1003-6202.2010.06.011. (in Chinese)
doi: 10.3969/j.issn.1003-6202.2010.06.011 |
|
[17] | 施润淋, 王晓东. 高温烘干-挂面干燥新技术. 面粉通讯, 2005, 15(2): 33-38. |
SHI R L, WANG X D. High temperature drying-New drying technology of hanging flour. Modern Flour Milling Industry, 2005, 15(2): 33-38. (in Chinese) | |
[18] | SUPARAT R, CHOMDAO S, CHAWLADDA T. Nutritive improvement of instant fried noodles with oat bran. Songklanakarin Journal of Science and Technology, 2006, 28(1): 89-97. |
[19] | 王杰, 张影全, 刘锐, 张波, 魏益民. 挂面干燥工艺研究及其关键参数分析. 中国粮油学报, 2014, 29(10): 88-93. |
WANG J, ZHANG Y Q, LIU R, ZHANG B, WEI Y M. The drying process and its key parameters of Chinese dried noodle. Journal of the Chinese Cereals and Oils Association, 2014, 29(10): 88-93. (in Chinese) | |
[20] | 马庆华, 李永红, 梁丽松, 李琴, 王海, 许元峰, 孙玉波, 王贵禧. 冬枣优良单株果实品质的因子分析与综合评价. 中国农业科学, 2010, 43(12): 2491-2499. |
MA Q H, LI Y H, LIANG L S, LI Q, WANG H, XU Y F, SUN Y B, WANG G X. Factor analysis and synthetical evaluation of the fruit quality of Dongzao (Ziziphus jujuba Mill. ‘Dongzao’) advanced selections. Scientia Agricultura Sinica, 2010, 43(12): 2491-2499. (in Chinese) | |
[21] |
CHEN J Y, ZHANG H, MIAO Y. The effect of quantity of salt on the drying characteristics of fresh noodles. Agriculture & Agricultural Science Procedia, 2014, (2): 207-211. doi: 10.1016/j.aaspro.2014.11.029.
doi: 10.1016/j.aaspro.2014.11.029 |
[22] |
刘雪, 曾祥媛, 张园, 罗蓉, 高若曦, 赵武奇. 恒温及变温气体射流冲击干燥对猕猴桃片干燥特性及品质的影响. 核农学报, 2020, 34(11): 2470-2476.
doi: 10.11869/j.issn.100-8551.2020.11.2470 |
LIU X, ZENG X Y, ZHANG Y, LUO R, GAO R X, ZHAO W Q. Effects of constant and alternating temperatures air impingement drying on the drying characteristics and quality of kiwifruit slices. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2470-2476. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.11.2470 |
|
[23] |
陈建伟. 挂面烘干新工艺. 粮油食品科技, 2006, 16(2): 38. doi: 10.16210/j.cnki.1007-7561.2006.02.016.
doi: 10.16210/j.cnki.1007-7561.2006.02.016 |
CHEN J W. New drying technology of hanging noodles. Science and Technology of Cereals, Oils and Foods, 2006, 16(2): 38. doi: 10.16210/j.cnki.1007-7561.2006.02.016. (in Chinese)
doi: 10.16210/j.cnki.1007-7561.2006.02.016 |
|
[24] |
PEKKA L, KATJA K, ILKKA L, SIMO L. Effect of heat treatment on lipid stability in processed oats. Journal of Cereal Science, 2003, 37(2): 215-221.
doi: 10.1006/jcrs.2002.0496 |
[25] |
姬长英, 蒋思杰, 张波, 郭俊, MUHAMMAD S M. 辣椒热泵干燥特性及工艺参数优化. 农业工程学报, 2017, 33(13): 296-302. doi: 10.11975/j.issn.1002-6819.2017.13.039.
doi: 10.11975/j.issn.1002-6819.2017.13.039 |
JI C Y, JIANG S J, ZHANG B, GUO J, MUHAMMAD S M. Heat pump drying properties of chili and optimization of technical parameters. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 296-302. doi: 10.11975/j.issn.1002-6819.2017.13.039. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2017.13.039 |
|
[26] | 李华伟, 陈洁, 王春, 高峰. 预干燥阶段对挂面品质影响的研究. 粮油加工, 2009(5): 84-86. |
LI H W, CHEN J, WANG C, GAO F. Study on influence of pre-drying stage on quality of noodle. Cereals and Oils Processing, 2009(5): 84-86. (in Chinese) | |
[27] |
赵建华, 述小英, 李浩霞, 郑慧文, 尹跃, 安巍, 王亚军. 不同果色枸杞鲜果品质性状分析及综合评价. 中国农业科学, 2017, 50(12): 2338-2348. doi: 10.3864/j.issn.0578-1752.2017.12.014.
doi: 10.3864/j.issn.0578-1752.2017.12.014 |
ZHAO J H, SHU X Y, LI H X, ZHENG H W, YIN Y, AN W, WANG Y J. Analysis and comprehensive evaluation of the quality of wolfberry (Lycium L.) fresh fruits with different fruit colors. Scientia Agricultura Sinica, 2017, 50(12): 2338-2348. doi: 10.3864/j.issn.0578-1752.2017.12.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.014 |
|
[28] |
木合塔尔·扎热, 阿卜杜许库尔·牙合甫, 故丽米热·卡克什, 马合木提·阿不来提, 哈地尔·依沙克. 新疆地方品种梨果实品质性状综合评价. 农业工程学报, 2021, 37(7): 278-285. doi: 10.11975/j.issn.1002-6819.2021.07.034.
doi: 10.11975/j.issn.1002-6819.2021.07.034 |
MUHTAR Z, ABDUXUKUR Y, MAHMUT A, GULMIRA K, KADIR E. Comprehensive evaluation of fruit quality traits of local pear cultivars in Xinjiang Region of China. Society of Agricultural Engineering, 2021, 37(7): 278-285. doi: 10.11975/j.issn.1002-6819.2021.07.034. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2021.07.034 |
|
[29] |
古丽尼沙·卡斯木, 木合塔尔·扎热, 张东亚, 郭靖, 艾吉尔·阿布拉, 盛玮, 阿布都热西提·热合曼. 基于因子分析的无花果引进品种果实品质性状综合评价. 食品科学, 2018, 39(1): 99-104. doi: 10.7506/spkx1002-6630-201801015.
doi: 10.7506/spkx1002-6630-201801015 |
GULNISA K, MUHTAR Z, ZHANG D Y, GUO J, AJAR A, SHENG W, ABUDUREXIT R. Factor analysis and comprehensive evaluation of fruit quality traits of introduced fig cultivars. Food Science, 2018, 39(1): 99-104. doi: 10.7506/spkx1002-6630-201801015. (in Chinese)
doi: 10.7506/spkx1002-6630-201801015 |
|
[30] |
YAN L B, ZHANG Z L, ZHANG Y, YANG H J, QIU G R, WANG D S, LIAN Y Y. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Biotechnology Letters, 2021, 43(9): 1765-1778. doi: 10.1007/s10529-021-03144-8.
doi: 10.1007/s10529-021-03144-8 pmid: 34021830 |
[31] |
SHU G W, MEI S, ZHANG Q, XIN N, CHEN H. Application of the Plackett-Burman design to determine the main factors affecting the anti-oxidative activity of goat’s milk casein hydrolyzed by Alcalase and papain. Acta scientiarum polonorum Technologia Alimentaria, 2018, 17(3): 257-266. doi: 10.17306/J.AFS.0580.
doi: 10.17306/J.AFS.0580 |
[32] | 吴斯宇, 曾盈蓉, 唐聘, 桂卉, 胡立志. RGD环肽修饰的姜黄素/黄芩苷靶向共递送纳米脂质体的制备工艺优化及表征. 中草药, 2021, 52(22): 6824-6844. |
WU S Y, ZENG Y R, TANG P, GUI H, HU L Z. Preparation process optimization and characterization of RGD cyclopeptide modified curcumin/baicalin co-delivery targeted liposomes. Chinese Traditional and Herbal Drugs, 2021, 52(22): 6824-6844. (in Chinese) | |
[33] |
柯巧媚, 曾威, 帅雨桐, 金建. 酒糟纤维素超声波辅助酶解工艺研究. 食品工业科技, 2022, 43(8): 196-203. doi: 10.13386/j.issn1002-0306.2021070206.
doi: 10.13386/j.issn1002-0306.2021070206 |
KE Q M, ZENG W, SHUAI Y T, JIN J. Study on ultrasonic-assisted enzymatic hydrolysis of distiller’s grains cellulose. Science and Technology of Food Industry, 2022, 43(8): 196-203. doi: 10.13386/j.issn1002-0306.2021070206. (in Chinese)
doi: 10.13386/j.issn1002-0306.2021070206 |
|
[34] | 赵莹, 严龙飞, 严文静, 章建浩. 低温等离子体活化水与介质阻挡联合处理对草莓冷杀菌效果及品质的影响. 食品科学, 2021, 43(17): 105-116. |
ZHAO Y, YAN L F, YAN W J, ZHANG J H. Effect of combined treatment of cold plasma activated water and dielectric barrier discharge plasma on sterilization efficiency of strawberry. Food Science, 2021, 43(17): 105-116. (in Chinese) | |
[35] | 陈海燕, 程仕群, 胡腾鑫, 郦明浩. 蜂蜜中果糖、葡萄糖、蔗糖的稳定性. 食品工业, 2021, 42(11): 237-242. |
CHEN H Y, CHENG S Q, HU T X, LI M H. Stability of fructose, glucose and sucrose in honey. The Food Industry, 2021, 42(11): 237-242. (in Chinese) | |
[36] | 曾祥媛, 赵武奇, 卢丹, 吴妮, 孟永宏, 高贵田, 雷玉山. 超声波对猕猴桃片的渗糖效果及干燥能耗与品质的影响. 中国农业科学, 2019, 52(4): 725-737. |
ZENG X Y, ZHAO W Q, LU D, WU N, MENG Y H, GAO G T, LEI Y S. Effects of ultrasound on the sugar permeability effect, drying energy consumption and quality of kiwifruit slices. Scientia agricultura sinica, 2019, 52(4): 725-737. (in Chinese) | |
[37] | 蒋晗, 赵进, 方结红, 黄光荣, 李红亮, 潘家荣. Plackett-Burman设计和响应面法在食品专业综合实验教学中的应用. 食品工程, 2017(2): 10-14. |
JIANG H, ZHAO J, FANG J H, HUANG G R, LI H L, PAN J R. Application of Plackett-Burman design and response surface methodology in the food speciality comprehensive experiment teaching. Food Engineering, 2017(2): 10-14. (in Chinese) |
[1] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[2] | 钟艳平,师立松,周瑢,高媛,何延庆,方圣,张秀荣,王林海,吴自明,张艳欣. 芝麻素高效提取检测技术的建立与高芝麻素种质的筛选[J]. 中国农业科学, 2022, 55(11): 2109-2120. |
[3] | 杜金婷,张雁,李雁,王佳佳,廖娜,钟立煌,骆碧群,林江. 超声耦合双水相体系提取茶皂素的工艺优化与机制探讨[J]. 中国农业科学, 2022, 55(1): 167-183. |
[4] | 张锦源,李彦生,于镇华,谢志煌,刘俊杰,王光华,刘晓冰,吴俊江,Stephen J Herbert,金剑. 作物-土壤氮循环对大气CO2浓度和温度升高响应的研究进展[J]. 中国农业科学, 2021, 54(8): 1684-1701. |
[5] | 郑海霞,高玉林,张方梅,杨超霞,蒋健,朱勋,张云慧,李祥瑞. 马铃薯甲虫热激蛋白基因Ld-hsp70的克隆及温度胁迫下的表达特性[J]. 中国农业科学, 2021, 54(6): 1163-1175. |
[6] | 杨语嫣,李耀文,邢爽,张敏红,冯京海. 基于体表温度的肉鸡温湿指数模型研究[J]. 中国农业科学, 2021, 54(6): 1270-1279. |
[7] | 曹寒冰,谢钧宇,刘菲,高健永,王楚涵,王仁杰,谢英荷,李廷亮. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性[J]. 中国农业科学, 2021, 54(21): 4611-4622. |
[8] | 王国丽,常芳弟,张宏媛,卢闯,宋佳珅,王婧,逄焕成,李玉义. 不同厚度秸秆隔层对河套灌区盐碱土壤温度、水分和食葵产量的影响[J]. 中国农业科学, 2021, 54(19): 4155-4168. |
[9] | 王萱萱,刘春宇,谢贝昱,张淑淑,王丹阳,朱振元. 碱提甘蔗皮多糖提取工艺、初步结构及其对α-葡萄糖苷酶的抑制作用[J]. 中国农业科学, 2021, 54(12): 2653-2665. |
[10] | 王旭,张德权,赵莹鑫,摆玉蔷,李欣,侯成立,郑晓春,陈丽. 干法成熟过程羊腿肉持水能力与水分迁移规律[J]. 中国农业科学, 2021, 54(1): 179-189. |
[11] | 柳艳霞,王振宇,郑晓春,朱瑶迪,陈丽,张德权. 基于品质指标预测北京烤鸭的中心温度[J]. 中国农业科学, 2020, 53(8): 1655-1663. |
[12] | 王钧,李广,闫丽娟,刘强,聂志刚. 旱地春小麦产量对不同生育阶段温度变化的响应模拟[J]. 中国农业科学, 2020, 53(5): 904-916. |
[13] | 普雪可,吴春花,勉有明,苗芳芳,侯贤清,李荣. 不同覆盖方式对旱作马铃薯生长及土壤水热特征的影响[J]. 中国农业科学, 2020, 53(4): 734-747. |
[14] | 殷文,柴强,于爱忠,赵财,樊志龙,胡发龙,范虹,郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响[J]. 中国农业科学, 2020, 53(23): 4764-4776. |
[15] | 袁雄坤,姜丽丽,陶诗煜,臧建军,王军军. 母猪热应激敏感指标体系的研究进展[J]. 中国农业科学, 2020, 53(22): 4691-4699. |
|